About this Journal Submit a Manuscript Table of Contents
Journal of Computational Medicine
Volume 2013 (2013), Article ID 312728, 8 pages
http://dx.doi.org/10.1155/2013/312728
Research Article

QSAR Investigation on Quinolizidinyl Derivatives in Alzheimer’s Disease

1Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
2Department of Chemistry, Payame Noor University, Behshahr Branch, Behshahr, Iran
3Department of Chemistry, Payame Noor University, Sari Branch, Sari, Iran
4Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Received 15 December 2012; Revised 24 March 2013; Accepted 7 April 2013

Academic Editor: Hon Keung Tony Ng

Copyright © 2013 Ghasem Ghasemi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, pp. 741–766, 2001.
  2. H. H. Griffiths, I. J. Morten, and N. M. Hooper, “Emerging and potential therapies for Alzheimer's disease,” Expert Opinion on Therapeutic Targets, vol. 12, no. 6, pp. 693–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Roland and H. Jacobsen, “Alzheimer's disease: from pathology to therapeutic approaches,” Angewandte Chemie, vol. 48, no. 17, pp. 3030–3059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Gella and N. Durany, “Oxidative stress in Alzheimer disease,” Cell Adhesion and Migration, vol. 3, no. 1, pp. 88–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Mesulam, A. Guillozet, P. Shaw, and B. Quinn, “Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain,” Neurobiology of Disease, vol. 9, no. 1, pp. 88–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Hansch and A. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC, USA, 1995.
  7. H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, Wiley-Interscience, New York, NY, USA, 2008.
  8. T. Puzyn, J. Leszczynski, and M. T. Cronin, Recent Advances in QSAR Studies: Methods and Applications, Springer, New York, NY, USA, 1st edition, 2009.
  9. L. He and P. C. Jurs, “Assessing the reliability of a QSAR model's predictions,” Journal of Molecular Graphics and Modelling, vol. 23, no. 6, pp. 503–523, 2005. View at Publisher · View at Google Scholar
  10. D. V. Eldred, C. L. Weikel, P. C. Jurs, and K. L. E. Kaiser, “Prediction of fathead minnow acute toxicity of organic compounds from molecular structure,” Chemical Research in Toxicology, vol. 12, no. 7, pp. 670–678, 1999. View at Publisher · View at Google Scholar
  11. Q. S. Du, P. G. Mezey, and K. C. Chou, “Heuristic molecular lipophilicity potential (HMLP): a 2D-QSAR study to LADH of molecular family pyrazole and derivatives,” Journal of Computational Chemistry, vol. 26, no. 5, pp. 461–470, 2005. View at Publisher · View at Google Scholar
  12. Q. S. Du, R. B. Huang, Y. T. Wei, L. Q. Du, and K. C. Chou, “Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR),” Journal of Computational Chemistry, vol. 29, no. 2, pp. 211–219, 2008. View at Publisher · View at Google Scholar
  13. Q. S. Du, R. B. Huang, and K. C. Chou, “Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design,” Current Protein & Peptide Science, vol. 9, no. 3, pp. 248–259, 2008. View at Publisher · View at Google Scholar
  14. B. Tasso, M. Catto, O. Nicolotti et al., “Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease,” European Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 2170–2184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. K. Freyhult, K. Andersson, and M. G. Gustafsson, “Structural modeling extends QSAR analysis of antibody-lysozyme interactions to 3D-QSAR,” Biophysical Journal, vol. 84, pp. 2264–2272, 2003. View at Publisher · View at Google Scholar
  16. C. Karthikeyan, N. S. H. Moorthy N, and P. Trivedi, “QSAR study of substituted 2-pyridinyl guanidines as selective urokinase-type plasminogen activator (uPA) inhibitors,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, pp. 6–13, 2009. View at Publisher · View at Google Scholar
  17. A. Höskuldsson, “PLS regression methods,” Journal of Chemometrics, vol. 2, no. 3, pp. 211–228, 1988. View at Publisher · View at Google Scholar
  18. P. J. Gemperline, “Principal component analysis,” in Practical Guide to Chemometrics, pp. 69–104, CRC Press, 2nd edition, 2006.
  19. D. J. Livingstone and D. W. Salt, “Variable Selection—Spoilt for Choice?” Reviews in Computational Chemistry, vol. 21, pp. 287–348, 2005.
  20. G. Ghasemi, M. Nirouei, S. Shariati, P. Abdolmaleki, and Z. Rastgoo, Arabian Journal of Chemistry. In press.