- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Article Processing Charges ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Recently Accepted Articles ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Journal of Control Science and Engineering

Volume 2013 (2013), Article ID 432034, 7 pages

http://dx.doi.org/10.1155/2013/432034

## Gain Performance for a Class of Lipschitz Uncertain Nonlinear Systems via Variable Gain Robust Output Feedback Controllers

^{1}The Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan^{2}The Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Received 27 December 2012; Accepted 1 April 2013

Academic Editor: Onur Toker

Copyright © 2013 Hidetoshi Oya and Kojiro Hagino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

We consider a design problem of a variable gain robust output feedback controller with guaranteed gain performance for a class of Lipschitz uncertain nonlinear systems. The proposed variable gain robust output feedback controller achieves not only robust stability but also a specified gain performance. In this paper, we show that sufficient conditions for the existence of the proposed variable gain robust output feedback controller with guaranteed gain performance are given in terms of linear matrix inequalities (LMIs). Finally, a simple numerical example is included.

#### 1. Introduction

In general, there exists a gap between controlled systems and their mathematical models. Therefore controller design methods dealing with the model uncertainties explicitly have been required, and, for linear dynamical systems with unknown parameters, a large number of design methods of robust state feedback controllers have been presented (e.g., [1] and references therein). In particular, there are lots of existing results for state feedback robust control such as quadratic stabilizing control, control (see [2, 3] and references therein). Besides, some design methods of variable gain robust controllers for uncertain dynamical systems have also been suggested (e.g., [4, 5]). These controllers consist of a fixed gain controller and a variable gain one, and the variable gain controller is tuned by updating laws.

By the way, since not all the states are measurable in practical systems because of technical, physical, and/or economic reasons, the control scheme may be designed via observer-based robust controllers [6] or robust output feedback one [7], which is of interest in this paper, and these robust controllers have also been well studied. Geromel et al. [8] use LMI approach to design static output feedback controllers based on a set of Lyapunov inequalities coupled by the constraint that one Lyapunov matrix is the inverse of another. Additionally for a class of linear systems with uncertainties of which upper bounds are unknown, an adaptive robust output feedback stabilizing controller has been proposed [9].

On the other hand in recent years, much attention has been focusing upon global stabilization for nonlinear systems via output feedback control (e.g., [10, 11]). Mazenc et al. [10] have shown that, through counter examples, some extra growth conditions on the unmeasurable states of the plant are usually necessary for the global stabilization of nonlinear systems via output feedback. Additionally, some researchers have studied the control problem for a selective class of nonlinear systems by placing some structural constraints on the nonlinearities in order to derive output feedback control. In Tsinias [12], the problem of backstepping design for time-varying nonlinear systems with unknown parameters was considered. Pailla and Zhu [13] have proposed a nonlinear observer-based controller for a class of Lipschitz nonlinear systems. Choi and Lim [14] have presented a solution to the output feedback stabilization problem for a class of single-input single-output Lipschitz nonlinear systems and the nonlinearity characterization function (NCF) concept. Besides, a design method of a variable gain robust output feedback stabilizing controller for a class of Lipschitz uncertain nonlinear systems has also been suggested in [15].

In this paper on the basis of the works of [9, 15], we propose a design method of a variable gain robust output feedback controller with guaranteed gain performance for a class of Lipschitz uncertain nonlinear systems. In this paper, we show that sufficient conditions for the existence of the variable gain robust output feedback controller which achieves not only internal stability but also a specified gain performance are given in terms of LMIs. Therefore, one can easily see that there are crucial difference between our new one and the existing results [15] which merely deal with stabilization problem via output feedback controllers. This paper is organized as follows. In Section 2, we show the notation used in this paper. In Section 3, we define the class of Lipschitz uncertain nonlinear systems under consideration and introduce a variable gain robust output feedback controller. Section 4 contains our main results. Finally, numerical examples are presented.

#### 2. Preliminaries

In this section, we show notations and useful and well-known lemmas which are used in this paper.

For a matrix , the transpose of matrix and the inverse of one are denoted by and , respectively. Also, means , and represents -dimensional identity matrix. For real symmetric matrices and , means that is positive (resp., nonnegative) definite matrix. For a vector , denotes standard Euclidian norm, and, for a matrix , represents its induced norm. The symbol “” means equality by definition. Besides, is -space (i.e., the collection of all square integrable functions) defined on , and, for a signal , denotes its -norm.

Lemma 1. *For arbitrary matrices and and vectors and which have appropriate dimensions, the following inequality holds:
**
where is a time-varying unknown matrix satisfying . *

*Proof. * This relation is easily obtained by Schwartz’s inequality [16].

Lemma 2 (Schur complement formula). * For a given constant real symmetric matrix , the following items are equivalent:*(i)*,
*(ii)* and ,*(iii)* and .*

*Proof. *See Boyd et al. [17].

#### 3. Problem Formulations

Consider the following Lipschitz uncertain nonlinear systems: where , and are the vectors of the state, the control input, the measured output, the controlled output, and the disturbance input, respectively, and the disturbance input is assumed to be square integrable; that is, . In (2), is supposed to have the following structure, In (2) and (3), the matrices , and are known system parameters and the matrix denotes unknown time-varying parameters, which satisfy . In this paper, we introduce the following assumption for the nonlinear term in (2): In addition we assume that for the function in (4) there exists a constant scalar such that for all Besides, we assume that there exists a constant matrix satisfying the following relation [15]:

The nominal system, ignoring unknown parameters and nonlinearities in (2), is given by and the nominal system of (7) is supposed to be stabilizable via static output feedback control. Namely, there exists a fixed gain matrix such that the matrix is asymptotically stable. In other words, there exists an output feedback control which stabilizes the nominal system of (7). Note that the static output feedback gain matrix is designed by using the existing results (e.g., [7, 18]). Besides, in this paper, we consider the following target model so as to generate the desirable trajectory for the Lipschitz uncertain nonlinear system of (2) For the target model of (8), we select the control input . Thus the target model can be written as Note that the fixed state feedback gain matrix can be determined by applying the standard LQ optimal control problem for the nominal system of (7).

Now on the basis of the work of [9], we introduce the error vectors , , and . Beside, using the fixed gain matrices and , we consider the following control input for the Lipschitz uncertain nonlinear system of (2): where is a compensation input [5, 9] and has the following form where is a variable gain matrix. Then one can see from (2) and (8)–(11) that the following uncertain error system with nonlinear terms can be derived: where is a stable matrix given by .

Now we will give the definition of the variable gain robust output feedback control with guaranteed gain performance [19].

*Definition 3. *For the Lipschitz uncertain nonlinear system of (2), the control input of (10) is said to be a variable gain robust output feedback control with guaranteed gain performance if the uncertain nonlinear error system of (12) is internally stable, and -norm of the uncertain nonlinear error system which transfers function from the disturbance input to the controlled output is less than or equal to a positive constant .

By introducing a symmetric positive definite matrix , we consider a quadratic function . Besides, we define the Halmitonian as Then we have the following lemma for the variable gain robust output feedback control with guaranteed gain performance .

Lemma 4. *Consider the uncertain nonlinear error system of (12) and the control input of (10).**For the quadratic function and the signals and , if there exist symmetric positive definite matrices and and a positive scalar satisfying the inequality
**
then control input of (10) is a variable gain robust output feedback control with guaranteed gain performance . *

*Proof. *By integrating both sides of the inequality of (14) from to with and , we easily see from that the inequality
holds. We see from the inequality of (15) that the uncertain nonlinear error system of (12) is robustly stable (internally stable). Note that if , then from the inequality of (14) the quadratic function becomes a Lyapunov function for the augmented system consisting of the target model of (9) and the uncertain nonlinear error system of (12). Namely, internal stability is guaranteed for the uncertain nonlinear error system of (12) and that the -norm of the uncertain nonlinear error system which transfers function from the disturbance input to the controlled output is less than a given positive constant , because the inequality of (15) means the following relation:
Thus the proof of Lemma 4 is completed.

Therefore, our control objective is to design the variable gain robust output feedback controller with guaranteed gain performance for the Lipschitz uncertain nonlinear system of (2). That is to derive the symmetric positive definite matrices and , a positive scalar , and the variable gain matrix which satisfies the inequality condition of (14) for all admissible nonlinear perturbations and the disturbance input .

#### 4. Main Results

In this section, we show our main results.

The following theorem gives an LMI-based design synthesis of the variable gain robust output feedback control with guaranteed gain performance .

Theorem 5. * Consider the uncertain nonlinear error system of (12) with the variable gain matrix .**If there exist symmetric positive definite matrices , , , and and positive scalars , and satisfying the LMIs
**
then, by using the solution of the LMIs of (17) and the known scalar , the variable gain matrix is determined as
**
In (18), [5], and is a positive scalar defined as
**
where is a design parameter. Then the control input of (10) is a variable gain robust output feedback control with guaranteed gain performance . *

*Proof. *Consider the quadratic function , the Hamiltonian of (13), and the inequality of (14).

The time derivative of the quadratic function along the trajectory of the target model of (9) and the one of the uncertain nonlinear error systems of (12) is given by
Namely, the condition of (14) can be written as
Besides, one can see from the assumption of (5) for the nonlinear term and Lemma 1 that the following inequality holds:
From the assumption of (6), we have the following inequality as a sufficient condition for the inequality of (22):
Here we have used the well-known following relation:
Additionally, introducing the variable and some algebraic manipulations give the following inequality for Hamiltonian :
where is given by

Now we consider the case of . Note that the second LMI of (17) is equivalent to the following inequality:
Thus in this case, considering the variable gain matrix given by (18) and the second LMI, the third one, and the fourth one of (17) and some trivial algebraic manipulations give
In (28), is the positive constant given by (19). Besides, one can see from the first LMI of (17) and the relation of (28) that the inequality of (14) is satisfied.

Next, we consider the case of . In this case, we see from the definition of the compensation input of (11) and the variable gain matrix of (18) that if the LMIs of (17) are satisfied, then the inequality of (14) also holds.

From the above discussion, if the LMIs of (17) are feasible, then the inequality condition of (14) for Hamiltonian is always satisfied. Namely, the proposed control input of (10) is a variable gain robust output feedback control with guaranteed gain performance. This completes the proof of Theorem 5.

The LMIs of (17) define a convex solution set of , , , , and . Therefore various efficient convex optimization algorithms can be used to test whether the linear matrix inequality (LMI) is solvable and to generate particular solutions. Since our interest is in establishing gain performance, we can also minimize the parameter (see Appendix A).

#### 5. Illustrative Examples

In order to demonstrate the efficiency of the proposed control scheme, we have run a simple example. The control problem considered here is not necessarily practical. However, the simulation results stated below illustrate the distinct feature of the proposed adaptive robust controller.

Consider the uncertain nonlinear system described by that is, . In this example we assume that the positive scalar in (5) is given by .

Firstly, selecting the weighting matrices such as and , we have the solution of algebraic Riccati equation for the standard LQ control problem and the optimal feedback gain matrix such as

Next, adopting the LMI-based algorithm based on the work of [18] (see Appendix B), we design an output feedback gain matrix for the nominal system. We select the design parameter such as ; then, by applying the LMI-based design algorithm, we obtain the following output feedback gain matrix for the nominal system:

Finally, in order to derive the proposed controller, solve the LMIs of (17). By solving the LMIs of (17), we have the solution of (31) and Therefore, guaranteed gain performance via the proposed variable gain controller is given by

#### 6. Conclusions

In this paper, we have proposed a variable gain robust output feedback controller with guaranteed gain performance for a class of Lipschitz uncertain nonlinear systems. The proposed control scheme is adaptable when some assumptions are satisfied, and, in cases where only the output signal of the controlled system is available, the proposed method can be used widely.

The future research subject is the extension of proposed robust controller to such a broad class of systems as large-scale interconnected system, time-delay systems, and so on. Furthermore in future work, we will examine the assumption of (6).

#### Appendices

#### A. Optimal Guaranteed Gain Performance

Since the LMIs of (17) define a convex solution set, we consider minimizing the parameter , because our interest is in establishing gain performance. Thus our design problem can be reduced to the following constrained convex optimization problem If the optimal solution , , , , and of the constrained convex optimization problem of (28) is obtained, then the control input of (10) with the variable gain matrix in (18) is a variable gain robust output feedback control with guaranteed optimal gain performance .

As a result, the following theorem is obtained.

Theorem A.1. *Consider the Lipschitz uncertain nonlinear system of (2) and the control input of (10).**The control input of (10) is a variable gain robust output feedback control with guaranteed optimal gain performance provided that the constrained convex optimization problem of (A.1) is feasible.*

#### B. LMI-Based Design Algorithm for an Output Feedback Gain

Consider the following linear dynamical system: where , and are the vectors of the state, the control input, and the measurement output, respectively, and the matrices , , and denote the nominal values of system parameters.

For the linear system (B.1), we consider the static output feedback control . The following LMI-based algorithm to derive the static output feedback gain matrix has been developed by the existing result of [18].

*A LMI-Based Algorithm*

*Step 1. *Define , where is the desired prescribed degree of stability, as described in Anderson and Moore [20].

*Step 2. *Solve the following LMI problem:

*Step 3. *By using the matrices and , set the state feedback gain matrix such as .

*Step 4. *Solve the following LMI feasibility problem:

*Step 5. *In order to derive an output feedback gain , fix the matrix and solve the following LMI minimization problem:
where .

#### Acknowledgment

The authors would like to thank CAE Solutions Corporation for providing its support in conducting this study.

#### References

- K. Zhou,
*Essentials of Robust Control*, Prentice Hall, Upper Saddle River, NJ, USA, 1998. - I. R. Petersen and C. V. Hollot, “A riccati equation approach to the stabilization of uncertain linear systems,”
*Automatica*, vol. 22, no. 4, pp. 397–411, 1986. View at Scopus - J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard ${\mathscr{H}}_{2}$ and ${\mathscr{H}}_{\infty}$ control problems,”
*IEEE Transactions on Automatic Control*, vol. 34, no. 8, pp. 831–847, 1989. View at Publisher · View at Google Scholar - M. Maki and K. Hagino, “Robust control with adaptation mechanism for improving transient behaviour,”
*International Journal of Control*, vol. 72, no. 13, pp. 1218–1226, 1999. View at Publisher · View at Google Scholar - H. Oya and K. Hagino, “Robust control with adaptive compensation input for linear uncertain systems,”
*IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, vol. E86-A, no. 6, pp. 1517–1524, 2003. View at Scopus - J. R. Petersen, “A Riccati equation approach to the design of stabilizing controllers and observers for a class of uncertain linear systems,”
*IEEE Transactions on Automatic Control*, vol. 30, no. 9, pp. 904–907, 1985. View at Scopus - V. Kučera and C. E. de Souza, “A necessary and sufficient condition for output feedback stabilizability,”
*Automatica*, vol. 31, no. 9, pp. 1357–1359, 1995. View at Publisher · View at Google Scholar - J. C. Geromel, C. C. de Souza, and R. E. Skelton, “LMI numerical solution for output feedback stabilization,” in
*Proceedings of American Control Conference (ACC '94)*, pp. 40–44, Baltimore, Md, USA, 1994. - H. Oya, K. Hagino, and S. Kayo, “Synthesis of adaptive robust output feedback controllers for a class of uncertain linear systems,” in
*Proceedings of the 47th IEEE Conference on Decision and Control*, pp. 995–1000, Cancun, Mexico, 2008. - F. Mazenc, L. Praly, and W. P. Dayawansa, “Global stabilization by output feedback: examples and counterexamples,”
*Systems & Control Letters*, vol. 23, no. 2, pp. 119–125, 1994. View at Publisher · View at Google Scholar - A. N. Atassi and H. K. Khalil, “A separation principle for the stabilization of a class of nonlinear systems,”
*IEEE Transactions on Automatic Control*, vol. 44, no. 9, pp. 1672–1687, 1999. View at Publisher · View at Google Scholar - J. Tsinias, “Backstepping design for time-varying nonlinear systems with unknown parameters,”
*Systems & Control Letters*, vol. 39, no. 4, pp. 219–227, 2000. View at Publisher · View at Google Scholar - P. R. Pailla and Y. Zhu, “Controller and observer design for lipschitz nonlinear systems,” in
*Proceedings of the American Control Conference (ACC '04)*, pp. 2379–2384, Boston, Mass, USA, 2004. - H. L. Choi and J. T. Lim, “Output feedback stabilization for a class of Lipschitz nonlinear systems,”
*IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, vol. E88-A, no. 2, pp. 602–605, 2005. View at Scopus - H. Oya and K. Hagino, “Synthesis of variable gain robust output feedback controllers for a class of uncertain Lipschitz nonlinear systems,” in
*Proceedings of the 47th IEEE International Conference on Control & Automation (IEEE ICCA '11)*, pp. 698–703, Santiago, Chile, December 2011. - F. R. Gantmacher,
*The Theory of Matrices. Vol. 1*, Chelsea Publishing, New York, NY, USA, 1960. - S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,
*Linear Matrix Inequalities in System and Control Theory*, vol. 15 of*SIAM Studies in Applied Mathematics*, SIAM, Philadelphia, Pa, USA, 1994. - R. E. Benton, Jr. and D. Smith, “A non-iterative LMI-based algorithm for robust static-output-feedback stabilization,”
*International Journal of Control*, vol. 72, no. 14, pp. 1322–1330, 1999. View at Publisher · View at Google Scholar - H. Oya and K. Hagino, “Robust non-fragile ${\mathscr{H}}^{\infty}$ controllers for uncertain linear systems,”
*Bulletin of the University of Electro-Communications*, vol. 18, no. 1-2, pp. 53–58, 2006. - B. D. O. Anderson and J. B. Moore, “Linear system optimization with prescribed degree of stability,”
*Proceedings of the Institution of Electrical Engineers*, vol. 116, no. 12, pp. 2083–2087, 1969.