About this Journal Submit a Manuscript Table of Contents
Journal of Drug Delivery
Volume 2011 (2011), Article ID 376548, 10 pages
http://dx.doi.org/10.1155/2011/376548
Research Article

Modeling the Release Kinetics of Poorly Water-Soluble Drug Molecules from Liposomal Nanocarriers

1Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
2Department of Pharmaceutical Technology, Friedrich Schiller University of Jena, Lessingstraße 8, 07743 Jena, Germany

Received 22 December 2010; Accepted 22 March 2011

Academic Editor: Volkmar Weissig

Copyright © 2011 Stephan Loew et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Lipinski, “Drug-like properties and the causes of poor solubility and poor permeability,” Journal of Pharmacological and Toxicological Methods, vol. 44, no. 1, pp. 235–249, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Fahr, P. Van Hoogevest, J. Kuntsche, and M. L. S. Leigh, “Lipophilic drug transfer between liposomal and biological membranes: what does it mean for parenteral and oral drug delivery?” Journal of Liposome Research, vol. 16, no. 3, pp. 281–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Fahr and X. Liu, “Drug delivery strategies for poorly water-soluble drugs,” Expert Opinion on Drug Delivery, vol. 4, no. 4, pp. 403–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Poste and D. Papahadjopoulos, “Lipid vesicles as carriers for introducing materials into cultured cells—influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 5, pp. 1603–1607, 1976. View at Scopus
  5. A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” International Journal of Pharmaceutics, vol. 154, no. 2, pp. 123–140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 297–315, 2006. View at Scopus
  7. P. Sapra and T. M. Allen, “Ligand-targeted liposomal anticancer drugs,” Progress in Lipid Research, vol. 42, no. 5, pp. 439–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. R. Sawant and V. P. Torchilin, “Liposomes as ‘smart’ pharmaceutical nanocarriers,” Soft Matter, vol. 6, no. 17, pp. 4026–4044, 2010.
  9. A. Rogerson, J. Cummings, and A. T. Florence, “Adriamycin-loaded niosomes: drug entrapment, stability and release,” Journal of Microencapsulation, vol. 4, no. 4, pp. 321–328, 1987. View at Scopus
  10. R. Margalit, R. Alon, M. Linenberg, I. Rubin, T. J. Roseman, and R. W. Wood, “Liposomal drug delivery—thermodynamic and chemical kinetic considerations,” Journal of Controlled Release, vol. 17, no. 3, pp. 285–296, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Saarinen-Savolainen, T. Järvinen, H. Taipale, and A. Urtti, “Method for evaluating drug release from liposomes in sink conditions,” International Journal of Pharmaceutics, vol. 159, no. 1, pp. 27–33, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Mohammed, N. Weston, A. G. A. Coombes, M. Fitzgerald, and Y. Perrie, “Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability,” International Journal of Pharmaceutics, vol. 285, no. 1-2, pp. 23–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Hefeshaa, S. Loew, X. Liu, S. May, and A. Fahr, “Transfer mechanism of temoporfin between liposomal membranes,” Journal of Controlled Release, vol. 150, no. 3, pp. 279–286, 2011. View at Publisher · View at Google Scholar
  14. J. D. Jones and T. E. Thompson, “Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration,” Biochemistry, vol. 28, no. 1, pp. 129–134, 1989. View at Scopus
  15. T. L. Steck, F. J. Kezdy, and Y. Lange, “An activation-collision mechanism for cholesterol transfer between membranes,” Journal of Biological Chemistry, vol. 263, no. 26, pp. 13023–13031, 1988. View at Scopus
  16. M. G. Wootan, “Mechanism of fluorescent fatty acid transfer from adipocyte fatty acid binding protein to membranes,” Biochemistry, vol. 32, no. 33, pp. 8622–8627, 1993. View at Scopus
  17. L. R. McLean and M. C. Phillips, “Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles,” Biochemistry, vol. 20, no. 10, pp. 2893–2900, 1981. View at Scopus
  18. E. Yang and W. H. Huestis, “Mechanism of intermembrane phosphatidylcholine transfer—effects of pH and membrane configuration,” Biochemistry, vol. 32, no. 45, pp. 12218–12228, 1993. View at Scopus
  19. D. E. Decker, S. M. Vroegop, T. G. Goodman, T. Peterson, and S. E. Buxser, “Kinetics and thermodynamics of emulsion delivery of lipophilic antioxidants to cells in culture,” Chemistry and Physics of Lipids, vol. 76, no. 1, pp. 7–25, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sasnouski, D. Kachatkou, V. Zorin, F. Guillemin, and L. Bezdetnaya, “Redistribution of Foscan (R) from plasma proteins to model membranes,” Photochemical and Photobiological Sciences, vol. 5, no. 8, pp. 770–777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. P. Torchilin, “Micellar nanocarriers: pharmaceutical perspectives,” Pharmaceutical Research, vol. 24, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 1, pp. e9–e24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Cai, Y. Wang, L. J. Zhu, and Z. Q. Liu, “Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs,” Current Drug Metabolism, vol. 11, no. 2, pp. 197–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Ricchelli, S. Gobbo, G. Moreno, C. Salet, L. Brancaleon, and A. Mazzini, “Photophysical properties of porphyrin planar aggregates in liposomes,” European Journal of Biochemistry, vol. 253, no. 3, pp. 760–765, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. B. West, F. L. H. Brown, and F. Schmid, “Membrane-protein interactions in a generic coarse-grained model for lipid bilayers,” Biophysical Journal, vol. 96, no. 1, pp. 101–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. Kim, J. C. Neu, and G. F. Oster, “Many-body forces between membrane inclusions: a new pattern-formation mechanism,” Europhysics Letters, vol. 48, no. 1, pp. 99–105, 1999. View at Scopus
  27. K. Bohinc, V. Kralj-Iglič, and S. May, “Interaction between two cylindrical inclusions in a symmetric lipid bilayer,” Journal of Chemical Physics, vol. 119, no. 14, pp. 7435–7444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Goulian, R. Bruinsma, and P. Pincus, “Long-range forces in heterogeneous fluid membranes,” Europhys Letters, vol. 22, pp. 145–150, 1993.
  29. F. N. R. Petersen, M. Ø. Jensen, and C. H. Nielsen, “Interfacial tryptophan residues: a role for the cation-π effect?” Biophysical Journal, vol. 89, no. 6, pp. 3985–3996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. E. Norman and H. Nymeyer, “Indole localization in lipid membranes revealed by molecular simulation,” Biophysical Journal, vol. 91, no. 6, pp. 2046–2054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Doisy, J. E. Proust, TZ. Ivanova, I. Panaiotov, and J. L. Dubois, “Phospholipid/drug interactions in liposomes studied by rheological properties of monolayers,” Langmuir, vol. 12, no. 25, pp. 6098–6103, 1996. View at Scopus
  32. C. Bombelli, G. Caracciolo, P. Di Profio, et al., “Inclusion of a photosensitizer in liposomes formed by DMPC/gemini surfactant: correlation between physicochemical and biological features of the complexes,” Journal of Medicinal Chemistry, vol. 48, no. 15, pp. 4882–4891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Sengupta, J. C. Smith, and G. M. Ullmann, “Partitioning of amino-acid analogues in a five-slab membrane model,” Biochimica et Biophysica Acta, vol. 1778, no. 10, pp. 2234–2243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Camenisch, G. Folkers, and H. Van De Waterbeemd, “Shapes of membrane permeability-lipophilicity curves: extension of theoretical models with an aqueous pore pathway,” European Journal of Pharmaceutical Sciences, vol. 6, no. 4, pp. 321–329, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Balaz, “Lipophilicity in trans-bilayer transport and subcellular pharmacokinetics,” Perspectives in Drug Discovery and Design, vol. 19, no. 1, pp. 157–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Grassi, G. Grassi, R. Lapasin, and I. Colombo, Understanding Drug Release and Absorption Mechanisms: A Physical and Mathematical Approach, CRC Press, 2006.
  37. L. Thilo, “Kinetics of phospholipid exchange between bilayer membranes,” Biochimica et Biophysica Acta, vol. 469, no. 3, pp. 326–334, 1977. View at Scopus
  38. P. F. F. Almeida, “Lipid transfer between vesicles: effect of high vesicle concentration,” Biophysical Journal, vol. 76, no. 4, pp. 1922–1928, 1999. View at Scopus
  39. N. Liu and H. J. Park, “Factors effect on the loading efficiency of vitamin C loaded chitosan-coated nanoliposomes,” Colloids and Surfaces B: Biointerfaces, vol. 76, no. 1, pp. 16–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Schreier, S. V. P. Malheiros, and E. De Paula, “Surface active drugs: self-association and interaction with membranes and surfactants. physicochemical and biological aspects,” Biochimica et Biophysica Acta, vol. 1508, no. 1-2, pp. 210–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. J. D. Jones, P. F. Almeida, and T. E. Thompson, “Spontaneous interbilayer transfer of hexosylceramides between phospholipid bilayers,” Biochemistry, vol. 29, no. 16, pp. 3892–3897, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Liu, H. Lee, M. Huesca, A. Young, and C. Allen, “Liposome formulation of a novel hydrophobic aryl-imidazole compound for anti-cancer therapy,” Cancer Chemotherapy and Pharmacology, vol. 58, no. 3, pp. 306–318, 2006. View at Publisher · View at Google Scholar · View at Scopus