About this Journal Submit a Manuscript Table of Contents
Journal of Drug Delivery
Volume 2013 (2013), Article ID 529312, 9 pages
http://dx.doi.org/10.1155/2013/529312
Review Article

Cancer Epigenetics: New Therapies and New Challenges

1Department of Haematology, University Hospital of Ioannina, St. Niarchou Avenue, 45110 Ioannina, Greece
2Computational Medicine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
3Division of Cancer Research, Medical Research Institute, University of Dundee, Hospital and Medical School, Dundee DD1 9SY, UK

Received 3 December 2012; Accepted 20 January 2013

Academic Editor: Evangelos Briasoulis

Copyright © 2013 Eleftheria Hatzimichael and Tim Crook. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 62, pp. 10–29, 2012. View at Publisher · View at Google Scholar
  2. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001. View at Publisher · View at Google Scholar
  3. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Jones and P. W. Laird, “Cancer epigenetics comes of age,” Nature Genetics, vol. 21, no. 2, pp. 163–167, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. J. Geutjes, P. K. Bajpe, and R. Bernards, “Targeting the epigenome for treatment of cancer,” Oncogene, vol. 31, pp. 3827–3844, 2012. View at Publisher · View at Google Scholar
  6. P. A. Jones and S. B. Baylin, “The fundamental role of epigenetic events in cancer,” Nature Reviews Genetics, vol. 3, no. 6, pp. 415–428, 2002. View at Scopus
  7. M. Tahiliani, K. P. Koh, Y. Shen et al., “Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1,” Science, vol. 324, no. 5929, pp. 930–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Maunakea, R. P. Nagarajan, M. Bilenky et al., “Conserved role of intragenic DNA methylation in regulating alternative promoters,” Nature, vol. 466, no. 7303, pp. 253–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. D. Hansen, W. Timp, H. C. Bravo et al., “Increased methylation variation in epigenetic domains across cancer types,” Nature Genetics, vol. 43, no. 8, pp. 768–775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Shahbazian and M. Grunstein, “Functions of site-specific histone acetylation and deacetylation,” Annual Review of Biochemistry, vol. 76, pp. 75–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Filippakopoulos, S. Picaud, M. Mangos et al., “Histone recognition and large-scale structural analysis of the human bromodomain family,” Cell, vol. 149, pp. 214–231, 2012. View at Publisher · View at Google Scholar
  13. Y. I. Tsukada, J. Fang, H. Erdjument-Bromage et al., “Histone demethylation by a family of JmjC domain-containing proteins,” Nature, vol. 439, no. 7078, pp. 811–816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Shi, F. Lan, C. Matson et al., “Histone demethylation mediated by the nuclear amine oxidase homolog LSD1,” Cell, vol. 119, no. 7, pp. 941–953, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Nielsen, M. Oulad-Abdelghani, J. A. Ortiz, E. Remboutsika, P. Chambon, and R. Losson, “Heterochromatin formation in mammalian cells: interaction between histones and HP1 Proteins,” Molecular Cell, vol. 7, no. 4, pp. 729–739, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Guccione, C. Bassi, F. Casadio et al., “Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive,” Nature, vol. 449, no. 7164, pp. 933–937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Esteller, “Molecular origins of cancer: epigenetics in cancer,” New England Journal of Medicine, vol. 358, no. 11, pp. 1148–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Dobrovic and D. Simpfendorfer, “Methylation of the BRCA1 gene in sporadic breast cancer,” Cancer Research, vol. 57, no. 16, pp. 3347–3350, 1997. View at Scopus
  19. G. Deng, A. Chen, J. Hong, H. S. Chae, and Y. S. Kim, “Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression,” Cancer Research, vol. 59, no. 9, pp. 2029–2033, 1999. View at Scopus
  20. E. Hatzimichael, G. Dranitsaris, A. Dasoula et al., “Von Hippel-Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of boneDisease,” Clinical Lymphoma and Myeloma, vol. 9, no. 3, pp. 239–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Hatzimichael, A. Dasoula, V. Kounnis et al., “Bcl2-interacting killer CpG methylation in multiple myeloma: a potential predictor of relapsed/refractory disease with therapeutic implications,” Leukemia & Lymphoma, vol. 53, pp. 1709–1713, 2012. View at Publisher · View at Google Scholar
  22. M. Esteller, “Epigenetics provides a new generation of oncogenes and tumour-suppressor genes,” British Journal of Cancer, vol. 94, no. 2, pp. 179–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Esteller, J. Garcia-Foncillas, E. Andion et al., “Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents,” New England Journal of Medicine, vol. 343, no. 19, pp. 1350–1354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. F. Fraga, E. Ballestar, A. Villar-Garea et al., “Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer,” Nature Genetics, vol. 37, no. 4, pp. 391–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ropero, M. F. Fraga, E. Ballestar et al., “A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition,” Nature Genetics, vol. 38, no. 5, pp. 566–569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. A. C. Cloos, J. Christensen, K. Agger et al., “The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3,” Nature, vol. 442, no. 7100, pp. 307–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Hatzimichael, G. Georgiou, L. Benetatos, and E. Briasoulis, “Gene mutations and molecularly targeted therapies in acute myeloid leukemia,” American Journal of Blood Research, vol. 3, pp. 29–51, 2013.
  28. X. J. Yan, J. Xu, Z. H. Gu et al., “Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia,” Nature Genetics, vol. 43, no. 4, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Simo-Riudalbas, S. A. Melo, and M. Esteller, “DNMT3B gene amplification predicts resistance to DNA demethylating drugs,” Genes Chromosomes and Cancer, vol. 50, no. 7, pp. 527–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. J. Ley, L. Ding, M. J. Walter et al., “DNMT3A mutations in acute myeloid leukemia.,” The New England Journal of Medicine, vol. 363, pp. 2424–2433, 2010. View at Publisher · View at Google Scholar
  31. F. Thol, F. Damm, A. Ludeking et al., “Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia,” Journal of Clinical Oncology, vol. 29, no. 21, pp. 2889–2896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Delhommeau, S. Dupont, V. Della Valle et al., “Mutation in TET2 in myeloid cancers,” New England Journal of Medicine, vol. 360, no. 22, pp. 2289–2301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Weissmann, T. Alpermann, V. Grossmann et al., “Landscape of TET2 mutations in acute myeloid leukemia,” Leukemia, vol. 26, pp. 934–942, 2012. View at Publisher · View at Google Scholar
  34. O. Kosmider, V. Gelsi-Boyer, M. Cheok et al., “TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs),” Blood, vol. 114, no. 15, pp. 3285–3291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. C. Chou, S. C. Chou, C. Y. Liu et al., “TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics,” Blood, vol. 118, pp. 3803–3810, 2011. View at Publisher · View at Google Scholar
  36. P. S. Ward, J. Patel, D. R. Wise et al., “The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate,” Cancer Cell, vol. 17, no. 3, pp. 225–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. R. Mardis, L. Ding, D. J. Dooling et al., “Recurring mutations found by sequencing an acute myeloid leukemia genome,” New England Journal of Medicine, vol. 361, no. 11, pp. 1058–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Rakheja, S. Konoplev, L. J. Medeiros, and W. Chen, “IDH mutations in acute myeloid leukemia,” Human Pathology, vol. 43, pp. 1541–1551, 2012. View at Publisher · View at Google Scholar
  39. M. E. Figueroa, O. Abdel-Wahab, C. Lu et al., “Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation,” Cancer Cell, vol. 18, pp. 553–567, 2010. View at Publisher · View at Google Scholar
  40. G. Rege-Cambrin, E. Giugliano, L. Michaux et al., “Trisomy 11 in myeloid malignancies is associated with internal tandem duplication of both MLL and FLT3 genes,” Haematologica, vol. 90, no. 2, pp. 262–264, 2005. View at Scopus
  41. C. Steudel, M. Wermke, M. Schaich et al., “Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia,” Genes Chromosomes and Cancer, vol. 37, no. 3, pp. 237–251, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. V. Krivtsov and S. A. Armstrong, “MLL translocations, histone modifications and leukaemia stem-cell development,” Nature Reviews Cancer, vol. 7, no. 11, pp. 823–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Varambally, S. M. Dhanasekaran, M. Zhou et al., “The polycomb group protein EZH2 is involved in progression of prostate cancer,” Nature, vol. 419, no. 6907, pp. 624–629, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Benetatos, E. Voulgaris, G. Vartholomatos, and E. Hatzimichael, “Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome,” International Journal of Cancer, 2012. View at Publisher · View at Google Scholar
  45. J. A. Simon and C. A. Lange, “Roles of the EZH2 histone methyltransferase in cancer epigenetics,” Mutation Research, vol. 647, no. 1-2, pp. 21–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. J. Sneeringer, M. P. Scott, K. W. Kuntz et al., “Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 49, pp. 20980–20985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Ernst, A. J. Chase, J. Score et al., “Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders,” Nature Genetics, vol. 42, no. 8, pp. 722–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Nikoloski, S. M. C. Langemeijer, R. P. Kuiper et al., “Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes,” Nature Genetics, vol. 42, no. 8, pp. 665–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Benetatos, E. Hatzimichael, A. Dasoula et al., “CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes,” Leukemia Research, vol. 34, no. 2, pp. 148–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Benetatos, A. Dasoula, E. Hatzimichael et al., “Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions,” Annals of Hematology, vol. 90, pp. 1037–1045, 2011. View at Publisher · View at Google Scholar
  51. J. R. Melki, P. C. Vincent, and S. J. Clark, “Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia,” Cancer Research, vol. 59, no. 15, pp. 3730–3740, 1999. View at Scopus
  52. M. A. McDevitt, “Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies,” Seminars in Oncology, vol. 39, pp. 109–122, 2012. View at Publisher · View at Google Scholar
  53. S. Takada, K. Morita, K. Hayashi et al., “Methylation status of fragile histidine triad (FHIT) gene and its clinical impact on prognosis of patients with multiple myeloma,” European Journal of Haematology, vol. 75, no. 6, pp. 505–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Shen, H. Kantarjian, Y. Guo et al., “DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 28, no. 4, pp. 605–613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Watanabe, H. Ueda, T. Etoh et al., “A change in promoter methylation of hMLH1 is a cause of acquired resistance to platinum-based chemotherapy in epithelial ovarian cancer,” Anticancer Research, vol. 27, no. 3 B, pp. 1449–1452, 2007. View at Scopus
  56. N. Syed, H. M. Coley, J. Sehouli et al., “Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer,” Cancer Research, vol. 71, no. 9, pp. 3317–3327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Fenaux, G. J. Mufti, E. Hellstrom-Lindberg et al., “Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study,” The Lancet Oncology, vol. 10, no. 3, pp. 223–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Gollob and C. J. Sciambi, “Decitabine up-regulates S100A2 expression and synergizes with IFN-γ to kill uveal melanoma cells,” Clinical Cancer Research, vol. 13, no. 17, pp. 5219–5225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Appleton, H. J. Mackay, I. Judson et al., “Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors,” Journal of Clinical Oncology, vol. 25, no. 29, pp. 4603–4609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Matei, F. Fang, C. Shen et al., “Epigenetic resensitization to platinum in ovarian cancer,” Cancer Research, vol. 72, pp. 2197–2205, 2012. View at Publisher · View at Google Scholar
  61. H. Wang, S. Lee, C. L. Nigro et al., “NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity,” British Journal of Cancer, vol. 106, pp. 1446–1452, 2012. View at Publisher · View at Google Scholar
  62. H. C. Tsai, H. Li, L. Van Neste et al., “Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells,” Cancer Cell, vol. 21, pp. 430–446, 2012. View at Publisher · View at Google Scholar
  63. J. C. Cheng, C. B. Matsen, F. A. Gonzales et al., “Inhibition of DNA methylation and reactivation of silenced genes by zebularine,” Journal of the National Cancer Institute, vol. 95, no. 5, pp. 399–409, 2003. View at Scopus
  64. J. Datta, K. Ghoshal, W. A. Denny et al., “A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation,” Cancer Research, vol. 69, no. 10, pp. 4277–4285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. J. M. de Ruijter, A. H. van Gennip, H. N. Caron, S. Kemp, and A. B. P. van Kuilenburg, “Histone deacetylases (HDACs): characterization of the classical HDAC family,” Biochemical Journal, vol. 370, no. 3, pp. 737–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. M. G. Riggs, R. G. Whittaker, J. R. Neumann, and V. M. Ingram, “n-butyrate causes histone modification in HeLa and Friend erythroleukaemia cells,” Nature, vol. 268, no. 5619, pp. 462–464, 1977. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Raffoux, A. Cras, C. Recher et al., “Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome,” Oncotarget, vol. 1, pp. 34–42, 2010.
  68. A. O. Soriano, H. Yang, S. Faderl et al., “Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome,” Blood, vol. 110, no. 7, pp. 2302–2308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. H. M. Prince, M. J. Bishton, and S. J. Harrison, “Clinical studies of histone deacetylase inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3958–3969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. E. Witta, R. M. Jotte, K. Konduri et al., “Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy,” Journal of Clinical Oncology, vol. 30, pp. 2248–2255, 2012. View at Publisher · View at Google Scholar
  71. C. Gridelli, A. Rossi, and P. Maione, “The potential role of histone deacetylase inhibitors in the treatment of non-small-cell lung cancer,” Critical Reviews in Oncology/Hematology, vol. 68, no. 1, pp. 29–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. K. T. Lin, Y. W. Wang, C. T. Chen, C. M. Ho, W. H. Su, and Y. S. Jou, “HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy,” Clinical Cancer Research, vol. 18, pp. 4691–4701, 2012. View at Publisher · View at Google Scholar
  73. V. Guerini, V. Barbui, O. Spinelli et al., “The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2V617F,” Leukemia, vol. 22, no. 4, pp. 740–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Younes, A. Sureda, D. Ben-Yehuda et al., “Panobinostat in patients with relapsed/refractory Hodgkin's lymphoma after autologous stem-cell transplantation: results of a phase II study,” Journal of Clinical Oncology, vol. 30, pp. 2197–2203, 2012. View at Publisher · View at Google Scholar
  75. S. Dimicoli, E. Jabbour, G. Borthakur et al., “Phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in patients with low or intermediate-1 risk myelodysplastic syndrome,” American Journal of Hematology, vol. 87, no. 1, pp. 127–129, 2012. View at Publisher · View at Google Scholar
  76. J. H. Strickler, A. N. Starodub, J. Jia et al., “Phase I study of bevacizumab, everolimus, and panobinostat (LBH-589) in advanced solid tumors,” Cancer Chemotherapy and Pharmacology, vol. 70, no. 2, pp. 251–258, 2012. View at Publisher · View at Google Scholar
  77. H. Wang, Q. Cao, and A. Z. Dudek, “Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy,” Anticancer Research, vol. 32, pp. 1027–1031, 2012.
  78. L. Santo, T. Hideshima, A. L. Kung et al., “Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma,” Blood, vol. 119, no. 11, pp. 2579–2589, 2012. View at Publisher · View at Google Scholar
  79. B. N. Singh, G. Zhang, Y. L. Hwa, J. Li, S. C. Dowdy, and S. W. Jiang, “Nonhistone protein acetylation as cancer therapy targets,” Expert Review of Anticancer Therapy, vol. 10, no. 6, pp. 935–954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Cashen, M. Juckett, A. Jumonville et al., “Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of myelodysplastic syndrome (MDS),” Annals of Hematology, vol. 91, pp. 33–38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. J. D. Hainsworth, J. R. Infante, D. R. Spigel, E. R. Arrowsmith, R. V. Boccia, and H. A. Burris, “A phase II trial of panobinostat, a histone deacetylase inhibitor, in the treatment of patients with refractory metastatic renal cell carcinoma,” Cancer Investigation, vol. 29, no. 7, pp. 451–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. R. A. Juergens, J. Wrangle, F. P. Vendetti et al., “Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer,” Cancer Discovery, vol. 1, pp. 598–607, 2011. View at Publisher · View at Google Scholar
  83. D. A. Pollyea, H. E. Kohrt, L. Gallegos et al., “Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia,” Leukemia, vol. 26, pp. 893–901, 2012. View at Publisher · View at Google Scholar
  84. W. Blum, S. Schwind, S. S. Tarighat et al., “Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia,” Blood, vol. 119, pp. 6025–6031, 2012. View at Publisher · View at Google Scholar
  85. L. Shen, Y. Kondo, S. Ahmed et al., “Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel,” Cancer Research, vol. 67, no. 23, pp. 11335–11343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. E. Hegi, D. Sciuscio, A. Murat, M. Levivier, and R. Stupp, “Epigenetic deregulation of DNA repair and its potential for therapy,” Clinical Cancer Research, vol. 15, no. 16, pp. 5026–5031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Raha, S. Thomas, and P. N. Munster, “Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance,” Epigenomics, vol. 3, pp. 451–470, 2011. View at Publisher · View at Google Scholar
  88. G. J. Sabnis, O. Goloubeva, S. Chumsri, N. Nguyen, S. Sukumar, and A. M. H. Brodie, “Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole,” Cancer Research, vol. 71, no. 5, pp. 1893–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Sharma, N. K. Saxena, N. E. Davidson, and P. M. Vertino, “Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctve corepressor complexes,” Cancer Research, vol. 66, no. 12, pp. 6370–6378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. C. G. Lian, Y. Xu, C. Ceol et al., “Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma,” Cell, vol. 150, pp. 1135–1146, 2012. View at Publisher · View at Google Scholar
  91. A. Sharma, T. Crook, A. Thompson, and C. Palmieri, “Surgical oncology: why biopsying metastatic breast cancer should be routine,” Nature Reviews Clinical Oncology, vol. 7, no. 2, pp. 72–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Syed, J. Langer, K. Janczar et al., “Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma,” Cell Death and Disease, vol. 4, article e458, 2013. View at Publisher · View at Google Scholar
  93. D. Huertas, M. Soler, J. Moreto et al., “Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin,” Oncogene, vol. 31, pp. 1408–1418, 2012. View at Publisher · View at Google Scholar
  94. J. Tan, X. Yang, L. Zhuang et al., “Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells,” Genes and Development, vol. 21, no. 9, pp. 1050–1063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Lara, A. Mai, V. Calvanese et al., “Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect,” Oncogene, vol. 28, pp. 781–791, 2009. View at Publisher · View at Google Scholar