About this Journal Submit a Manuscript Table of Contents
Journal of Drug Delivery
Volume 2013 (2013), Article ID 562727, 15 pages
http://dx.doi.org/10.1155/2013/562727
Research Article

Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma

Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Mumbai, Maharashtra 400098, India

Received 16 May 2013; Accepted 21 August 2013

Academic Editor: Philippe Maincent

Copyright © 2013 Ujwala Shinde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Soltau and T. J. Zimmerman, “Changing paradigms in the medical treatment of glaucoma,” Survey of Ophthalmology, vol. 47, no. 4, pp. S2–S5, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Pfeiffer, “Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor,” Survey of Ophthalmology, vol. 42, no. 2, pp. 137–151, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Sugrue, “The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor,” Journal of Ocular Pharmacology and Therapeutics, vol. 12, no. 3, pp. 363–376, 1996. View at Scopus
  4. N. Li, C. Zhuang, M. Wang, X. Sun, S. Nie, and W. Pan, “Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery,” International Journal of Pharmaceutics, vol. 379, no. 1-2, pp. 131–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. U. A. Shinde, S. Jaykumar, N. Hema, and S. Kavita, “Eudragit RL 100 based microspheres for ocular administration of azelastine hydrochloride,” Journal of Microencapsulation, vol. 29, no. 6, pp. 511–519, 2012.
  6. Y. Ali and K. Lehmussaari, “Industrial perspective in ocular drug delivery,” Advanced Drug Delivery Reviews, vol. 58, no. 11, pp. 1258–1268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Bucolo, A. Maltese, and F. Drago, “When nanotechnology meets the ocular surface,” Expert Review of Ophthalmology, vol. 3, no. 3, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hamidi, A. Azadi, and P. Rafiei, “Hydrogel nanoparticles in drug delivery,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1638–1649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Langer, E. Mutschler, G. Lambrecht et al., “Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part III: evaluation as drug delivery system for ophthalmic applications,” International Journal of Pharmaceutics, vol. 158, no. 2, pp. 219–231, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. R. C. Nagarwal, S. Kant, P. N. Singh, P. Maiti, and J. K. Pandit, “Polymeric nanoparticulate system: a potential approach for ocular drug delivery,” Journal of Controlled Release, vol. 136, no. 1, pp. 2–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Dev, J. C. Mohan, V. Sreeja et al., “Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications,” Carbohydrate Polymers, vol. 79, no. 4, pp. 1073–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Jayakumar, M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, and N. Selvamurugan, “Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications,” Progress in Materials Science, vol. 55, no. 7, pp. 675–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Anitha, S. Maya, N. Deepa et al., “Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells,” Carbohydrate Polymers, vol. 83, no. 2, pp. 452–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. N. K. Patel and V. K. Sinha, “Synthesis, characterization and optimization of water-Soluble chitosan derivatives,” International Journal of Polymeric Materials, vol. 58, no. 11, pp. 548–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. X.-G. Chen and H.-J. Park, “Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions,” Carbohydrate Polymers, vol. 53, no. 4, pp. 355–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Fu, B. Han, W. Dong, Z. Yang, Y. Lv, and W. Liu, “Effects of carboxymethyl chitosan on the blood system of rats,” Biochemical and Biophysical Research Communications, vol. 408, no. 1, pp. 110–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. A. Muzzarelli, F. Tanfani, M. Emanuelli, D. P. Pace, E. Chiurazzi, and M. Piani, “Sulfated N-(carboxymethyl)chitosans: novel blood anticoagulants,” Carbohydrate Research, vol. 126, no. 2, pp. 225–231, 1984. View at Scopus
  18. J. Du and Y.-L. Hsieh, “Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan,” Nanotechnology, vol. 19, no. 12, Article ID 125707, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Shi, Y. Du, J. Yang, B. Zhang, and L. Sun, “Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery,” Journal of Applied Polymer Science, vol. 100, no. 6, pp. 4689–4696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Papadimitriou, D. Bikiaris, K. Avgoustakis, E. Karavas, and M. Georgarakis, “Chitosan nanoparticles loaded with dorzolamide and pramipexole,” Carbohydrate Polymers, vol. 73, no. 1, pp. 44–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Karavas, E. Georgarakis, and D. Bikiaris, “Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 1, pp. 115–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. He, S. S. Davis, and L. Illum, “In vitro evaluation of the mucoadhesive properties of chitosan microspheres,” International Journal of Pharmaceutics, vol. 166, no. 1, pp. 75–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. N. P. Luepke, “Hen's egg chorioallantoic membrane test for irritation potential,” Food and Chemical Toxicology, vol. 23, no. 2, pp. 287–291, 1985. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Steiling, M. Bracher, P. Courtellemont, and O. De Silva, “The HET-CAM, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients,” Toxicology in Vitro, vol. 13, no. 2, pp. 375–384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Krenn and D. H. Paper, “Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.),” Phytomedicine, vol. 16, no. 12, pp. 1083–1088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Abdelkader, S. Ismail, A. Kamal, and R. G. Alany, “Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery,” Journal of Pharmaceutical Sciences, vol. 100, no. 5, pp. 1833–1846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. I. P. Kaur, A. Garg, A. K. Singla, and D. Aggarwal, “Vesicular systems in ocular drug delivery: an overview,” International Journal of Pharmaceutics, vol. 269, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. O. Ammar, H. A. Salama, M. Ghorab, and A. A. Mahmoud, “Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride,” AAPS PharmSciTech, vol. 10, no. 3, pp. 808–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-Y. Winum, A. Casini, F. Mincione et al., “Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-α-D- glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits,” Bioorganic and Medicinal Chemistry Letters, vol. 14, no. 1, pp. 225–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Fei Liu, Y. Lin Guan, D. Zhi Yang, Z. Li, and K. De Yao, “Antibacterial action of chitosan and carboxymethylated chitosan,” Journal of Applied Polymer Science, vol. 79, no. 7, pp. 1324–1335, 2001.
  31. F. S. Kittur, K. V. H. Prashanth, K. U. Sankar, and R. N. Tharanathan, “Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry,” Carbohydrate Polymers, vol. 49, no. 2, pp. 185–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Chen, Y. Du, and X. Zeng, “Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan—II. Effect of degree of deacetylation and carboxymethylation,” Carbohydrate Research, vol. 338, no. 4, pp. 333–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Rinaudo, P. Le Dung, C. Gey, and M. Milas, “Substituent distribution on O,N-carboxymethylchitosans by 1H and 13C n.m.r,” International Journal of Biological Macromolecules, vol. 14, no. 3, pp. 122–128, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Pan, Y.-J. Li, H.-Y. Zhao et al., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo,” International Journal of Pharmaceutics, vol. 249, no. 1-2, pp. 139–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Anitha, V. V. D. Rani, R. Krishna et al., “Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles,” Carbohydrate Polymers, vol. 78, no. 4, pp. 672–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. H. Singh and U. A. Shinde, “Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane,” Pharmazie, vol. 66, no. 8, pp. 594–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D.-G. Kim, Y.-I. Jeong, C. Choi et al., “Retinol-encapsulated low molecular water-soluble chitosan nanoparticles,” International Journal of Pharmaceutics, vol. 319, no. 1-2, pp. 130–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso, “Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers,” Journal of Applied Polymer Science, vol. 63, no. 1, pp. 125–132, 1997. View at Scopus
  39. H. H. Sigurdsson, E. Stefánsson, E. Gudmundsdóttir, T. Eysteinsson, M. Thorsteinsdóttir, and T. Loftsson, “Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration,” Journal of Controlled Release, vol. 102, no. 1, pp. 255–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. S. Snima, R. Jayakumar, A. G. Unnikrishnan, S. V. Nair, and V.-K. Lakshmanan, “O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells,” Carbohydrate Polymers, vol. 89, no. 3, pp. 1003–1007, 2012.
  41. L. Zhang, J. Guo, J. Zhou, G. Yang, and Y. Du, “Blend membranes from carboxymethylated chitosan/alginate in aqueous solution,” Journal of Applied Polymer Science, vol. 77, no. 3, pp. 610–616, 2000.
  42. M. R. Jimenez-Castellanos, H. Zia, and C. T. Rhodes, “Mucoadhesive drug delivery systems,” Drug Development and Industrial Pharmacy, vol. 19, no. 1-2, pp. 143–194, 1993. View at Scopus
  43. A. Ahuja, R. K. Khar, and J. Ali, “Mucoadhesive drug delivery systems,” Drug Development and Industrial Pharmacy, vol. 23, no. 5, pp. 489–515, 1997. View at Scopus
  44. B. Petit, K. Bouchemal, C. Vauthier, M. Djabourov, and G. Ponchel, “The counterbalanced effect of size and surface properties of chitosan-coated poly(isobutylcyanoacrylate) nanoparticles on mucoadhesion due to pluronic F68 addition,” Pharmaceutical Research, vol. 29, no. 4, pp. 943–952, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. K. H. Singh and U. A. Shinde, “Development and evaluation of novel polymeric nanoparticles of brimonidine tartrate,” Current Drug Delivery, vol. 7, no. 3, pp. 244–251, 2010. View at Publisher · View at Google Scholar · View at Scopus