Research Article

Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

Figure 1

Synthesis and testing of drug-loaded conventional and deformable NVs. Synthesis took place in a 26 μL volume microfluidic chamber, wherein controlled and confined laminar diffusive mixing of aqueous AF647-Zol (upper right, 1(a)) solution and lipid membrane components dissolved in isopropyl alcohol occurs within the microchannels and results in the formation of homogenous, reproducible populations of drug-loaded NVs, which may be made deformable by addition of the edge activator sorbitan monooleate (Span 80). The drug-loaded NVs and DNVs underwent dialysis, lyophilization, and resuspension before application to shaved calvarial skin of wildtype C57Bl6J mice. Aqueous solution of free AF647-Zol was also used. Deformable NVs more readily penetrate the outer dermis (upper dermal image) through nanopores without rupturing which may occur with conventional NVs (lower image, 1(b)) and releasing cargo before reaching the target.