About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2009 (2009), Article ID 835650, 10 pages
http://dx.doi.org/10.1155/2009/835650
Research Article

Sequence Variation and Expression of the Gimap Gene Family in the BB Rat

1Diabetes and Endocrinology Research Center, University of Washington, 815 Mercer Street, Building A, S130, Seattle, WA 98109, USA
2Department of Biological and Chemical Sciences, Salish Kootenai College, 58138 Hwy 93, Pablo, P.O. Box 70, MT 59855, USA
3Department of Clinical Sciences, Clinical Research Center, Lund University, Entrance 72, Building 91:10, 20502 Malmö, Sweden
4Department of Medicine, University of Washington, 1959 N.E. Pacific Street, Seattle, P.O. Box 357710, WA 98195, USA
5Department of Comparative Medicine, University of Washington, 1959 N.E. Pacific Street, Seattle, P.O. Box 357190, WA 98195, USA
6Department of Internal Medicine, University of Iowa, 375 Newton Road, 3111B MERF, Iowa City, IA 52242, USA

Received 9 December 2008; Accepted 8 February 2009

Academic Editor: Anjan Kowluru

Copyright © 2009 Elizabeth A. Rutledge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Markholst, S. Eastman, D. Wilson, B. E. Andreasen, and Å. Lernmark, “Diabetes segregates as a single locus in crosses between inbred BB rats prone or resistant to diabetes,” The Journal of Experimental Medicine, vol. 174, no. 1, pp. 297–300, 1991. View at Publisher · View at Google Scholar
  2. A. J. MacMurray, D. H. Moralejo, A. E. Kwitek, et al., “Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene,” Genome Research, vol. 12, no. 7, pp. 1029–1039, 2002. View at Publisher · View at Google Scholar
  3. J. Krücken, R. M. U. Schroetel, I. U. Müller, et al., “Comparative analysis of the human gimap gene cluster encoding a novel GTPase family,” Gene, vol. 341, no. 1-2, pp. 291–304, 2004. View at Publisher · View at Google Scholar
  4. J. M. Fuller, A. E. Kwitek, T. J. Hawkins, et al., “Introgression of F344 rat genomic DNA on BB rat chromosome 4 generates diabetes-resistant lymphopenic BB rats,” Diabetes, vol. 55, no. 12, pp. 3351–3357, 2006. View at Publisher · View at Google Scholar
  5. D. H. Moralejo, H. A. Park, S. J. Speros, et al., “Genetic dissection of lymphopenia from autoimmunity by introgression of mutated Ian5 gene onto the F344 rat,” Journal of Autoimmunity, vol. 21, no. 4, pp. 315–324, 2003. View at Publisher · View at Google Scholar
  6. L. Hornum, J. Rmer, and H. Markholst, “The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1,” Diabetes, vol. 51, no. 6, pp. 1972–1979, 2002. View at Publisher · View at Google Scholar
  7. M. Michalkiewicz, T. Michalkiewicz, R. A. Ettinger, et al., “Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat,” Physiological Genomics, vol. 19, no. 2, pp. 228–232, 2004. View at Publisher · View at Google Scholar
  8. M. Pandarpurkar, L. Wilson-Fritch, S. Corvera, et al., “Ian4 is required for mitochondrial integrity and T cell survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10382–10387, 2003. View at Publisher · View at Google Scholar
  9. S. Ilangumaran, M. Forand-Boulerice, S. M. Bousquet, et al., “Loss of GIMAP5 (GTPase of immunity-associated nucleotide binding protein 5) impairs calcium signaling in rat T lymphocytes,” Molecular Immunology, vol. 46, no. 6, pp. 1256–1259, 2009. View at Publisher · View at Google Scholar
  10. U. Dalberg, H. Markholst, and L. Hornum, “Both Gimap5 and the diabetogenic BBDP allele of Gimap5 induce apoptosis in T cells,” International Immunology, vol. 19, no. 4, pp. 447–453, 2007. View at Publisher · View at Google Scholar
  11. M. Keita, C. Leblanc, D. Andrews, and S. Ramanathan, “GIMAP5 regulates mitochondrial integrity from a distinct subcellular compartment,” Biochemical and Biophysical Research Communications, vol. 361, no. 2, pp. 481–486, 2007. View at Publisher · View at Google Scholar
  12. R. Kupfer, J. Lang, C. Williams-Skipp, M. Nelson, D. Bellgrau, and R. I. Scheinman, “Loss of a gimap/ian gene leads to activation of NF-κB through a MAPK-dependent pathway,” Molecular Immunology, vol. 44, no. 4, pp. 479–487, 2007. View at Publisher · View at Google Scholar
  13. R. D. Schulteis, H. Chu, X. Dai, et al., “Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5,” Blood, vol. 112, no. 13, pp. 4905–4914, 2008. View at Publisher · View at Google Scholar
  14. O. Stamm, J. Krücken, H.-P. Schmitt-Wrede, W. P. M. Benten, and F. Wunderlich, “Human ortholog to mouse gene imap38 encoding an ER-localizable G-protein belongs to a gene family clustered on chromosome 7q32-36,” Gene, vol. 282, no. 1-2, pp. 159–167, 2002. View at Publisher · View at Google Scholar
  15. L. Dahéron, T. Zenz, L. D. Siracusa, C. Brenner, and B. Calabretta, “Molecular cloning of Ian4: a BCR/ABL-induced gene that encodes an outer membrane mitochondrial protein with GTP-binding activity,” Nucleic Acids Research, vol. 29, no. 6, pp. 1308–1316, 2001. View at Publisher · View at Google Scholar
  16. T. Sandal, L. Aumo, L. Hedin, B. T. Gjertsen, and S. O. Døskeland, “Irod/Ian5: an inhibitor of γ-radiation- and okadaic acid-induced apoptosis,” Molecular Biology of the Cell, vol. 14, no. 8, pp. 3292–3304, 2003. View at Publisher · View at Google Scholar
  17. S. Bieg, G. Koike, J. Jiang, et al., “Genetic isolation of iddm 1 on chromosome 4 in the biobreeding (BB) rat,” Mammalian Genome, vol. 9, no. 4, pp. 324–326, 1998. View at Publisher · View at Google Scholar
  18. J. Krücken, M. Epe, W. P. M. Benten, N. Falkenroth, and F. Wunderlich, “Malaria-suppressible expression of the anti-apoptotic triple GTPase mGIMAP8,” Journal of Cellular Biochemistry, vol. 96, no. 2, pp. 339–348, 2005. View at Publisher · View at Google Scholar
  19. T. Nitta, M. Nasreen, T. Seike, et al., “IAN family critically regulates survival and development of T lymphocytes,” PLoS Biology, vol. 4, no. 4, article e103, pp. 1–13, 2006. View at Publisher · View at Google Scholar
  20. C. Carter, C. Dion, S. Schnell, et al., “A natural hypomorphic variant of the apoptosis regulator Gimap4/IAN1,” The Journal of Immunology, vol. 179, no. 3, pp. 1784–1795, 2007.
  21. J.-J. Filén, S. FiLén, R. Moulder, et al., “Quantitative proteomics reveals GIMAP family proteins 1 and 4 to be differentially regulated during human T helper cell differentiation,” Molecular & Cellular Proteomics, vol. 8, no. 1, pp. 32–44, 2009. View at Publisher · View at Google Scholar
  22. J. Lurton, T. M. Rose, G. Raghu, and A. S. Narayanan, “Isolation of a gene product expressed by a subpopulation of human lung fibroblasts by differential display,” American Journal of Respiratory Cell and Molecular Biology, vol. 20, no. 2, pp. 327–331, 1999.
  23. H. Nakajima, M. Takenaka, J.-Y. Kaimori, et al., “Gene expression profile of renal proximal tubules regulated by proteinuria,” Kidney International, vol. 61, no. 5, pp. 1577–1587, 2002. View at Publisher · View at Google Scholar
  24. P. A. Frischmeyer and H. C. Dietz, “Nonsense-mediated mRNA decay in health and disease,” Human Molecular Genetics, vol. 8, no. 10, pp. 1893–1900, 1999. View at Publisher · View at Google Scholar
  25. J. T. Mendell, N. A. Sharifi, J. L. Meyers, F. Martinez-Murillo, and H. C. Dietz, “Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise,” Nature Genetics, vol. 36, no. 10, pp. 1073–1078, 2004. View at Publisher · View at Google Scholar
  26. T. L. Reuber and F. M. Ausubel, “Isolation of arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes,” The Plant Cell, vol. 8, no. 2, pp. 241–249, 1996. View at Publisher · View at Google Scholar
  27. G. M. C. Poirier, G. Anderson, A. Huvar, et al., “Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants,” The Journal of Immunology, vol. 163, no. 9, pp. 4960–4969, 1999.
  28. M. Cambot, S. Aresta, B. Kahn-Perlès, J. de Gunzburg, and P.-H. Roméo, “Human immune associated nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells,” Blood, vol. 99, no. 9, pp. 3293–3301, 2002. View at Publisher · View at Google Scholar
  29. T. Zenz, A. Roessner, A. Thomas, et al., “hlan5: the human ortholog to the rat lan4/lddm1/lyp is a new member of the Ian family that is overexpressed in B-cell lymphoid malignancies,” Genes & Immunity, vol. 5, no. 2, pp. 109–116, 2004. View at Publisher · View at Google Scholar
  30. J. A. Lang, D. Kominski, D. Bellgrau, and R. I. Scheinman, “Partial activation precedes apoptotic death in T cells harboring an IAN gene mutation,” European Journal of Immunology, vol. 34, no. 9, pp. 2396–2406, 2004. View at Publisher · View at Google Scholar