About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2010 (2010), Article ID 176361, 11 pages
http://dx.doi.org/10.1155/2010/176361
Research Article

The Role of Rho Kinase in Sex-Dependent Vascular Dysfunction in Type 1 Diabetes

1The Department of Veterans Affairs Iowa City Health Care System, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, IA 52246, USA
2Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, IA 52242, USA
3Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, IA 52242, USA

Received 17 September 2009; Revised 1 December 2009; Accepted 14 January 2010

Academic Editor: Subrata K. Chakrabarti

Copyright © 2010 Daniel W. Nuno and Kathryn G. Lamping. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Newton, A. Z. LaCroix, S. R. Heckbert, L. Abraham, D. McCulloch, and W. Barlow, “Estrogen therapy and risk of cardiovascular events among women with type 2 diabetes,” Diabetes Care, vol. 26, no. 10, pp. 2810–2816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Jayagopal, P. Albertazzi, E. S. Kilpatrick, et al., “Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes,” Diabetes Care, vol. 25, no. 10, pp. 1709–1714, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Lee, D. W. Lee, K. S. Kim, and I. K. Lee, “Effect of estrogen on endothelial dysfunction in postmenopausal women with diabetes,” Diabetes Research and Clinical Practice, vol. 54, supplement 2, pp. S81–S92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Monti, J. T. Lonsdale, C. Montomoli, R. Montross, E. Schlag, and D. A. Greenberg, “Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4650–4655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Raile, A. Galler, S. Hofer, et al., “Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex,” Diabetes Care, vol. 30, no. 10, pp. 2523–2528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Dabelea, G. Kinney, J. K. Snell-Bergeon, et al., “Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study,” Diabetes, vol. 52, no. 11, pp. 2833–2839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Roeters van Lennep, H. T. Westerveld, D. W. Erkelens, and E. E. van der Wall, “Risk factors for coronary heart disease: implications of gender,” Cardiovascular Research, vol. 53, no. 3, pp. 538–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. W. B. Kannel and P. W. F. Wilson, “Risk factors that attenuate the female coronary disease advantage,” Archives of Internal Medicine, vol. 155, no. 1, pp. 57–61, 1995. View at Scopus
  9. W. B. Kannel and D. L. McGee, “Diabetes and cardiovascular disease. The Framingham study,” Journal of the American Medical Association, vol. 241, no. 19, pp. 2035–2038, 1979. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Barrett-Connor and D. L. Wingard, “Sex differential in ischemic heart disase mortality in diabetics: a prospective population-based study,” American Journal of Epidemiology, vol. 118, no. 4, pp. 489–496, 1983. View at Scopus
  11. W. G. Mayhan, H. Sun, and S. D. Irvine, “Influence of gender on dilatation of the basilar artery during diabetes mellitus,” Brain Research, vol. 930, no. 1-2, pp. 182–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Brown, M. F. Walsh, and J. Ren, “Influence of gender and diabetes on vascular and myocardial contractile function,” Endocrine Research, vol. 27, no. 4, pp. 399–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Ajayi, H. Hercule, J. Cory, B. E. Hayes, and A. O. Oyekan, “Gender difference in vascular and platelet reactivity to thromboxane A2-mimetic U46619 and to endothelial dependent vasodilation in Zucker fatty (hypertensive, hyperinsulinemic) diabetic rats,” Diabetes Research and Clinical Practice, vol. 59, no. 1, pp. 11–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. García-Villalón, E. Sanz, L. Monge, et al., “Vascular reactivity to vasopressin during diabetes: gender and regional differences,” European Journal of Pharmacology, vol. 459, no. 2-3, pp. 247–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. W. Nuno, V. P. Korovkina, S. K. England, and K. G. Lamping, “RhoA activation contributes to sex differences in vascular contractions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 9, pp. 1934–1940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Chrissobolis, K. Budzyn, P. D. Marley, and C. G. Sobey, “Evidence that estrogen suppresses Rho-kinase function in the cerebral circulation in vivo,” Stroke, vol. 35, no. 9, pp. 2200–2205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. G. Lamping and F. M. Faraci, “Role of sex differences and effects of endothelial NO synthase deficiency in responses of carotid arteries to serotonin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 523–528, 2001. View at Scopus
  18. F. M. Faraci, K. G. Lamping, M. L. Modrick, M. J. Ryan, C. D. Sigmund, and S. P. Didion, “Cerebral vascular effects of angiotensin II: new insights from genetic models,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 4, pp. 449–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Shimokawa and M. Rashid, “Development of Rho-kinase inhibitors for cardiovascular medicine,” Trends in Pharmacological Sciences, vol. 28, no. 6, pp. 296–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. W. Nuno, J. S. Harrod, and K. G. Lamping, “Sex-dependent differences in Rho activation contribute to contractile dysfunction in type 2 diabetic mice,” American Journal of Physiology, vol. 297, no. 4, pp. H1469–H1477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Tamura, H. Nakao, H. Yoshizaki, et al., “Development of specific Rho-kinase inhibitors and their clinical application,” Biochimica et Biophysica Acta, vol. 1754, no. 1-2, pp. 245–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Ishizaki, M. Uehata, I. Tamechika, et al., “Pharmacological properties of Y-27632, a specific inhibitor of Rho- associated kinases,” Molecular Pharmacology, vol. 57, no. 5, pp. 976–983, 2000. View at Scopus
  23. M. Uehata, T. Ishizaki, H. Satoh, et al., “Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension,” Nature, vol. 389, no. 6654, pp. 990–994, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Ikenoya, H. Hidaka, T. Hosoya, M. Suzuki, N. Yamamoto, and Y. Sasaki, “Inhibition of Rho-kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho-kinase inhibitor,” Journal of Neurochemistry, vol. 81, no. 1, pp. 9–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Sasaki, M. Suzuki, and H. Hidaka, “The novel and specific Rho-kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway,” Pharmacology and Therapeutics, vol. 93, no. 2-3, pp. 225–232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Breitenlechner, M. Gaßel, H. Hidaka, et al., “Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity,” Structure, vol. 11, no. 12, pp. 1595–1607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Vicari, B. Chaitman, D. Keefe, et al., “Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial,” Journal of the American College of Cardiology, vol. 46, no. 10, pp. 1803–1811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Hattori, H. Shimokawa, M. Higashi, et al., “Long-term inhibition of rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice,” Circulation, vol. 109, no. 18, pp. 2234–2239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Abe, S. Tawara, K. Oi, et al., “Long-term inhibition of Rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice,” Journal of Cardiovascular Pharmacology, vol. 48, no. 6, pp. 280–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Arita, Y. Hata, S. Nakao, et al., “Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage,” Diabetes, vol. 58, no. 1, pp. 215–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. O. A. Sandu, L. Ragolia, and N. Begum, “Diabetes in the Goto-Kakizaki rat is accompanied by impaired insulin-mediated myosin-bound phosphatase activation and vascular smooth muscle cell relaxation,” Diabetes, vol. 49, no. 12, pp. 2178–2189, 2000. View at Scopus
  32. K. Kauser and G. M. Rubanyi, “Gender difference in bioassayable endothelium-derived nitric oxide from isolated rat aortae,” American Journal of Physiology, vol. 267, no. 6, pp. H2311–H2317, 1994. View at Scopus
  33. J. Hiroki, H. Shimokawa, Y. Mukai, T. Ichiki, and A. Takeshita, “Divergent effects of estrogen and nicotine on Rho-kinase expression in human coronary vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 326, no. 1, pp. 154–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Morikage, H. Kishi, M. Sato, et al., “Cholesterol primes vascular smooth muscle to induce Ca2+ sensitization mediated by a sphingosylphosphorylcholine-Rho-kinase pathway: possible role for membrane raft,” Circulation Research, vol. 99, no. 3, pp. 299–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Deedwania, M. Kosiborod, E. Barrett, et al., “Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism,” Circulation, vol. 117, no. 12, pp. 1610–1619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Böttcher, D. Schleinitz, A. Tönjes, M. Blüher, M. Stumvoll, and P. Kovacs, “R1467H variant in the rho guanine nucleotide exchange factor 11 (ARHGEF11) is associated with impaired glucose tolerance and type 2 diabetes in German Caucasians,” Journal of Human Genetics, vol. 53, no. 4, pp. 365–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Fu, M. M. Sabra, C. Damcott, et al., “Evidence that Rho guanine nucleotide exchange factor 11 (ARHGEF11) on 1q21 is a type 2 diabetes susceptibility gene in the Old Order Amish,” Diabetes, vol. 56, no. 5, pp. 1363–1368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Kikuchi, M. Yamada, T. Imakiire, et al., “A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats,” Journal of Endocrinology, vol. 192, no. 3, pp. 595–603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Sordella, M. Classon, K.-Q. Hu, et al., “Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development,” Developmental Cell, vol. 2, no. 5, pp. 553–565, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Sordella, W. Jiang, G.-C. Chen, M. Curto, and J. Settleman, “Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis,” Cell, vol. 113, no. 2, pp. 147–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Shimokawa, K. Hiramori, H. Iinuma, et al., “Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study,” Journal of Cardiovascular Pharmacology, vol. 40, no. 5, pp. 751–761, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Shibuya, Y. Suzuki, K. Sugita, et al., “Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: results of a prospective placebo-controlled double-blind trial,” Journal of Neurosurgery, vol. 76, no. 4, pp. 571–577, 1992. View at Scopus