About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 147965, 8 pages
http://dx.doi.org/10.1155/2012/147965
Research Article

Inhibition of Aldose Reductase by Gentiana lutea Extracts

1Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad 500 007, India
2Vinca Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia
3Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received 3 March 2012; Accepted 22 May 2012

Academic Editor: Subrata Chakrabarti

Copyright © 2012 Chandrasekhar Akileshwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kinoshita, “A thirty year journey in the polyol pathway,” Experimental Eye Research, vol. 50, no. 6, pp. 567–573, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bhatnagar and S. K. Srivastava, “Aldose reductase: congenial and injurious profiles of an enigmatic enzyme,” Biochemical Medicine and Metabolic Biology, vol. 48, no. 2, pp. 91–121, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. P. F. Kador, J. H. Kinoshita, and N. E. Sharpless, “Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications,” Journal of Medicinal Chemistry, vol. 28, no. 7, pp. 841–849, 1985. View at Scopus
  6. N. Hotta, T. Toyota, K. Matsuoka et al., “Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study,” Diabetes Care, vol. 24, no. 10, pp. 1776–1782, 2001. View at Scopus
  7. P. Raskin and J. Rosenstock, “Aldose reductase inhibitors and diabetic complications,” The American Journal of Medicine, vol. 83, no. 2, pp. 298–306, 1987. View at Scopus
  8. M. A. Pfeifer, M. P. Schumer, and D. A. Gelber, “Aldose reductase inhibitors: the end of an era or the need for different trial designs?” Diabetes, vol. 46, supplement 2, pp. S82–S89, 1997. View at Scopus
  9. P. J. Oates and B. L. Mylari, “Aldose reductase inhibitors: therapeutic implications for diabetic complications,” Expert Opinion on Investigational Drugs, vol. 8, no. 12, pp. 2095–2119, 1999. View at Scopus
  10. P. F. Kador, W. G. Robison, and J. H. Kinoshita, “The pharmacology of aldose reductase inhibitors,” Annual Review of Pharmacology and Toxicology, vol. 25, pp. 691–714, 1985. View at Scopus
  11. P. Suryanarayana, P. A. Kumar, M. Saraswat, J. M. Petrash, and G. B. Reddy, “Inhibition of aldose reductase by tannoid principles of Emblica officinalis: implications for the prevention of sugar cataract,” Molecular Vision, vol. 10, pp. 148–154, 2004. View at Scopus
  12. P. Suryanarayana, M. Saraswat, J. M. Petrash, and G. B. Reddy, “Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats,” Molecular Vision, vol. 24, pp. 1291–1297, 2007. View at Scopus
  13. M. Saraswat, P. Muthenna, P. Suryanarayana, J. M. Petrash, and G. B. Reddy, “Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications,” Asia Pacific Journal of Clinical Nutrition, vol. 17, no. 4, pp. 558–565, 2008. View at Scopus
  14. P. Muthenna, P. Suryanarayana, S. Gunda, J. M. Petrash, and G. B. Reddy, “Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance,” FEBS Letters, vol. 583, no. 22, pp. 3637–3642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. B. Reddy, P. Muthenna, C. Akileshwari, M. Saraswat, and J. M. Petrash, “Inhibition of aldose reductase and sorbitol accumulation by dietary rutin,” Current Science, vol. 101, no. 9, pp. 1191–1197, 2011.
  16. M. Daniel and S. D. Sabnis, “Chemical systematics of family Gentianaceae,” Current Science, vol. 47, no. 4, pp. 109–111, 1978.
  17. J. M. Petrash, T. M. Harter, C. S. Devine et al., “Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303,” The Journal of Biological Chemistry, vol. 267, no. 34, pp. 24833–24840, 1992. View at Scopus
  18. J. I. Malone, G. Knox, S. Benford, and T. A. Tedesco, “Red cell sorbitol: an indicator of diabetic control,” Diabetes, vol. 29, no. 11, pp. 861–864, 1980. View at Scopus
  19. R. Hänsel and O. Sticher, Pharmakognosie-Phytopharmazie, vol. 8, Springer, Heidelberg, Germany, 2007.
  20. M. Wichtl, Teedrogen und Phytotherapeutika, vol. 4, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Germany, 2002.
  21. A. Aberham, S. Schwaiger, H. Stuppner, and M. Ganzera, “Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 45, no. 3, pp. 437–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Öztürk, S. Korkmaz, Y. Öztürk, and K. H. Başer, “Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts,” Planta Medica, vol. 72, no. 4, pp. 289–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Citová, M. Ganzera, H. Stuppner, and P. Solich, “Determination of gentisin, isogentisin, and amarogentin in Gentiana lutea L. by capillary electrophoresis,” Journal of Separation Science, vol. 31, no. 1, pp. 195–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Singh, “Phytochemicals of gentianaceae: a review of pharmacological properties,” International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 1, no. 1, pp. 33–36, 2008.
  25. A. Schmieder, S. Schwaiger, A. Csordas et al., “Isogentisin—a novel compound for the prevention of smoking-caused endothelial injury,” Atherosclerosis, vol. 194, no. 2, pp. 317–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Crosas, D. J. Hyndman, O. Gallego et al., “Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism,” The Biochemical Journal, vol. 373, part 3, pp. 973–979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Morrison, R. S. Clements, and A. I. Winegrad, “Effects of elevated glucose concentrations on the metabolism of the aortic wall,” The Journal of Clinical Investigation, vol. 51, no. 12, pp. 3114–3123, 1972. View at Scopus
  28. G. B. Reddy, A. Satyanarayana, N. Balakrishna et al., “Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy,” Molecular Vision, vol. 14, pp. 593–601, 2008. View at Scopus
  29. D. R. Tomlinson, E. J. Stevens, and L. T. Diemel, “Aldose reductase inhibitors and their potential for the treatment of diabetic complications,” Trends in Pharmacological Sciences, vol. 15, no. 8, pp. 293–297, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Öztürk, T. Herekman-Demir, Y. Öztürk, B. Bozan, and K. H. C. Başer, “Choleretic activity of Gentiana lutea ssp. symphyandra in rats,” Phytomedicine, vol. 5, no. 4, pp. 283–288, 1998. View at Scopus
  31. A. Kušar, A. Zupančič, M. Šentjurc, and D. Baričevič, “Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance,” Human and Experimental Toxicology, vol. 25, no. 10, pp. 599–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mathew, A. D. Taranalli, and S. S. Torgal, “Evaluation of anti-inflammatory and wound healing activity of Gentiana lutea rhizome extracts in animals,” Pharmaceutical Biology, vol. 42, no. 1, pp. 8–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Bruneton, Pharmacognosy, Lavoisier Publishing, Paris, France, 1999.
  34. M. Hostettmann-Kaldas, K. Hostettmann, and O. Sticher, “Xanthones, flavones and secoiridoids of American Gentiana species,” Phytochemistry, vol. 20, no. 3, pp. 443–446, 1981. View at Scopus