About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 201295, 5 pages
http://dx.doi.org/10.1155/2012/201295
Methodology Report

Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

Pharmacognosy Lab, Herbal Medicinal Product Technology Division, Industrial Technology Research Institute, Hsinchu 30011, Taiwan

Received 23 February 2012; Revised 22 June 2012; Accepted 5 July 2012

Academic Editor: Joseph R. Landolph Jr.

Copyright © 2012 Szu-Hsiu Liu and Lain-Tze Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Scopus
  2. J. A. Thomson, J. Itskovitz-Eldor, and S. S. Shapiro, “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, pp. 1145–1147, 1998.
  3. J. M. Wells and D. A. Melton, “Vertebrate endoderm development,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 393–410, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Lu, J. Brennan, and E. J. Robertson, “From fertilization to gastrulation: axis formation in the mouse embryo,” Current Opinion in Genetics and Development, vol. 11, no. 4, pp. 384–392, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Robb and P. P. L. Tam, “Gastrula organiser and embryonic patterning in the mouse,” Seminars in Cell and Developmental Biology, vol. 15, no. 5, pp. 543–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Sulzbacher, I. S. Schroeder, T. T. Truong, and A. M. Wobus, “Activin a-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions,” Stem Cell Reviews and Reports, vol. 5, no. 2, pp. 159–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. W. Kahan, L. M. Jacobson, D. A. Hullett et al., “Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation,” Diabetes, vol. 52, no. 8, pp. 2016–2024, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Roche, J. Jones, M. I. Arribas, T. Leon-Quinto, and B. Soria, “Role of small bioorganic molecules in stem cell differentiation to insulin-producing cells,” Bioorganic and Medicinal Chemistry, vol. 14, no. 19, pp. 6466–6474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Borowiak, R. Maehr, S. Chen et al., “Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells,” Cell Stem Cell, vol. 4, no. 4, pp. 348–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Chen, M. Borowiak, J. L. Fox et al., “A small molecule that directs differentiation of human ESCs into the pancreatic lineage,” Nature Chemical Biology, vol. 5, no. 4, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kubo, K. Shinozaki, J. M. Shannon et al., “Development of definitive endoderm from embryonic stem cells in culture,” Development, vol. 131, no. 7, pp. 1651–1662, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Yasunaga, S. Tada, S. Torikai-Nishikawa et al., “Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells,” Nature Biotechnology, vol. 23, no. 12, pp. 1542–1550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. A. D'Amour, A. D. Agulnick, S. Eliazer, O. G. Kelly, E. Kroon, and E. E. Baetge, “Efficient differentiation of human embryonic stem cells to definitive endoderm,” Nature Biotechnology, vol. 23, no. 12, pp. 1534–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Otonkoski, G. M. Beattie, M. I. Mally, C. Ricordi, and A. Hayek, “Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells,” Journal of Clinical Investigation, vol. 92, no. 3, pp. 1459–1466, 1993. View at Scopus
  15. P. Vaca, F. Martín, J. M. Vegara-Meseguer, J. M. Rovira, G. Berná, and B. Soria, “Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors,” Stem Cells, vol. 24, no. 2, pp. 258–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. Cho, J. M. Lim, D. H. Yoo et al., “Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic β-cell differentiation in human embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 366, no. 1, pp. 129–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin, and R. McKay, “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets,” Science, vol. 292, no. 5520, pp. 1389–1394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. T. León-Quinto, J. Jones, A. Skoudy, M. Burcin, and B. Soria, “In vitro directed differentation of mouse embryonic stem cells into insulin-producing cells,” Diabetologia, vol. 47, no. 8, pp. 1442–1451, 2004. View at Publisher · View at Google Scholar · View at Scopus