About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 578285, 7 pages
http://dx.doi.org/10.1155/2012/578285
Review Article

Diabetes and Thyroid Cancer Risk: Literature Review

1Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei 10002, Taiwan
2National Taiwan University College of Medicine, Taipei, Taiwan

Received 30 January 2012; Revised 30 March 2012; Accepted 20 April 2012

Academic Editor: Chien-Jen Chen

Copyright © 2012 Shyang-Rong Shih et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. Ahluwalia, K. A. Mack, W. Murphy, A. H. Mokdad, and V. S. Bales, “State-specific prevalence of selected chronic disease-related characteristics—behavioral risk factor surveillance system, 2001,” Morbidity and Mortality Weekly Report Surveillance Summaries, vol. 52, no. 8, pp. 1–80, 2003. View at Scopus
  2. A. A. Tahrani, C. J. Bailey, S. Del Prato, and A. H. Barnett, “Management of type 2 diabetes: new and future developments in treatment,” The Lancet, vol. 378, no. 9786, pp. 182–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. H. Tseng, C. P. Tseng, C. K. Chong et al., “Increasing incidence of diagnosed type 2 diabetes in Taiwan: analysis of data from a national cohort,” Diabetologia, vol. 49, no. 8, pp. 1755–1760, 2006. View at Publisher · View at Google Scholar
  4. S. S. Coughlin, E. E. Calle, L. R. Teras, J. Petrelli, and M. J. Thun, “Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults,” American Journal of Epidemiology, vol. 159, no. 12, pp. 1160–1167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. H. Tseng, C. K. Chong, and T. Y. Tai, “Secular trend for mortality from breast cancer and the association between diabetes and breast cancer in Taiwan between 1995 and 2006,” Diabetologia, vol. 52, no. 2, pp. 240–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Tseng, “Diabetes and risk of prostate cancer: a study using the National Health Insurance,” Diabetes Care, vol. 34, no. 3, pp. 616–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. Tseng, “Diabetes and risk of bladder cancer: a study using the National Health Insurance database in Taiwan,” Diabetologia, vol. 54, no. 8, pp. 2009–2015, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Tseng, “Diabetes and non-Hodgkin's lymphoma: analyses of prevalence and annual incidence in 2005 using the National Health Insurance database in Taiwan,” Annals of Oncology, vol. 23, no. 1, Article ID mdr334, pp. 153–158, 2012. View at Publisher · View at Google Scholar
  9. J. E. Paes, K. Hua, R. Nagy, R. T. Kloos, D. Jarjoura, and M. D. Ringel, “The relationship between body mass index and thyroid cancer pathology features and outcomes: a clinicopathological cohort study,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 9, pp. 4244–4250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Davies and H. G. Welch, “Increasing incidence of thyroid cancer in the United States, 1973–2002,” The Journal of the American Medical Association, vol. 295, no. 18, pp. 2164–2167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. T. Rojeski and H. Gharib, “Nodular thyroid disease. Evaluation and management,” The New England Journal of Medicine, vol. 313, no. 7, pp. 428–436, 1985. View at Scopus
  12. L. Enewold, K. Zhu, E. Ron et al., “Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 3, pp. 784–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Meinhold, E. Ron, S. J. Schonfeld et al., “Nonradiation risk factors for thyroid cancer in the US radiologic technologists study,” American Journal of Epidemiology, vol. 171, no. 2, pp. 242–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Borena, T. Stocks, H. Jonsson et al., “Serum triglycerides and cancer risk in the metabolic syndrome and cancer (Me-Can) collaborative study,” Cancer Causes and Control, vol. 22, no. 2, pp. 291–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. I. R. Hsu, S. P. Kim, M. Kabir, and R. N. Bergman, “Metabolic syndrome, hyperinsulinemia, and cancer,” The American Journal of Clinical Nutrition, vol. 86, no. 3, pp. 867S–871S, 2007. View at Scopus
  16. K. Y. Wolin, K. Carson, and G. A. Colditz, “Obesity and cancer,” The Oncologist, vol. 15, no. 6, pp. 556–565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. O. Adami, J. McLaughlin, A. Ekbom et al., “Cancer risk in patients with diabetes mellitus,” Cancer Causes and Control, vol. 2, no. 5, pp. 307–314, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Wideroff, G. Gridley, L. Mellemkjaer et al., “Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark,” Journal of the National Cancer Institute, vol. 89, no. 18, pp. 1360–1365, 1997. View at Scopus
  19. M. Inoue, M. Iwasaki, T. Otani, S. Sasazuki, M. Noda, and S. Tsugane, “Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan,” Archives of Internal Medicine, vol. 166, no. 17, pp. 1871–1877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Kuriki, K. Hirose, and K. Tajima, “Diabetes and cancer risk for all and specific sites among Japanese men and women,” European Journal of Cancer Prevention, vol. 16, no. 1, pp. 83–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Chodick, A. D. Heymann, L. Rosenmann et al., “Diabetes and risk of incident cancer: a large population-based cohort study in Israel,” Cancer Causes and Control, vol. 21, no. 6, pp. 879–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Aschebrook-Kilfoy, M. M. Sabra, A. Brenner et al., “Diabetes and thyroid cancer risk in the National Institutes of Health-AARP Diet and Health study,” Thyroid, vol. 21, no. 9, pp. 957–963, 2011. View at Publisher · View at Google Scholar
  23. C. M. Kitahara, E. A. Platz, L. E. Beane Freeman et al., “Physical activity, diabetes, and thyroid cancer risk: a pooled analysis of five prospective studies,” Cancer Causes and Control, vol. 23, no. 3, pp. 463–471, 2012. View at Publisher · View at Google Scholar
  24. P. Wu, “Thyroid disorders and diabetes. It is common for a person to be affected by both thyroid disease and diabetes,” Diabetes Self-Management, vol. 24, no. 5, pp. 80–87, 2007. View at Scopus
  25. J. Coclet, F. Foureau, P. Ketelbant, P. Galand, and J. E. Dumont, “Cell population kinetics in dog and human adult thyroid,” Clinical Endocrinology, vol. 31, no. 6, pp. 655–665, 1989. View at Scopus
  26. J. E. Dumont, C. Maenhaut, I. Pirson, M. Baptist, and P. P. Roger, “Growth factors controlling the thyroid gland,” Bailliere's Clinical Endocrinology and Metabolism, vol. 5, no. 4, pp. 727–754, 1991. View at Scopus
  27. R. Parameswaran, S. Brooks, and G. P. Sadler, “Molecular pathogenesis of follicular cell derived thyroid cancers,” International Journal of Surgery, vol. 8, no. 3, pp. 186–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Porcellini, G. Fenzi, and E. V. Avvedimento, “Mutations of thyrotropin receptor gene,” Journal of Molecular Medicine, vol. 75, no. 8, pp. 567–575, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. S. T. Sawyer and S. Cohen, “Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells,” Biochemistry, vol. 20, no. 21, pp. 6280–6286, 1981. View at Scopus
  30. J. K. Shaver, S. Tezelman, A. E. Siperstein et al., “Thyroid-stimulating hormone activates phospholipase C in normal and neoplastic thyroid tissue,” Surgery, vol. 114, no. 6, pp. 1064–1069, 1993. View at Scopus
  31. M. J. Schlumberger, S. Filetti, and I. D. Hey, “Nontoxic goiter and thyroid neoplasia,” in Williams Textbook of Endocrinology, H. M. Kronenberg, S. Melmed, K. S. Polonsky, and P. R. Larsen, Eds., pp. 411–442, Saunders, Philadelphia, Pa, USA, 11th edition, 2008.
  32. D. R. Clemmons, “Structural and functional analysis of insulin-like growth factors,” British Medical Bulletin, vol. 45, no. 2, pp. 465–480, 1989. View at Scopus
  33. S. E. Hankinson, W. C. Willett, G. A. Colditz et al., “Circulating concentrations of insulin-like growth factor-I and risk of breast cancer,” The Lancet, vol. 351, no. 9113, pp. 1393–1396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Ma, M. N. Pollak, E. Giovannucci et al., “Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3,” Journal of the National Cancer Institute, vol. 91, no. 7, pp. 620–625, 1999. View at Scopus
  35. D. Tramontano, G. W. Cushing, A. C. Moses, and S. H. Ingbar, “Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergized the stimulation of DNA synthesis induced by TSH and Graves'-IgG,” Endocrinology, vol. 119, no. 2, pp. 940–942, 1986. View at Scopus
  36. M. A. Pisarev, “Interrelationships between the pancreas and the thyroid,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 437–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Gursoy, “Rising thyroid cancer incidence in the world might be related to insulin resistance,” Medical Hypotheses, vol. 74, no. 1, pp. 35–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. N. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, and H. Niepomniszcze, “Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma,” Metabolic Syndrome and Related Disorders, vol. 7, no. 4, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Boelaert, “The association between serum TSH concentration and thyroid cancer,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1065–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. Haymart, D. J. Repplinger, G. E. Leverson et al., “Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 3, pp. 809–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Polyzos, M. Kita, Z. Efstathiadou et al., “Serum thyrotropin concentration as a biochemical predictor of thyroid malignancy in patients presenting with thyroid nodules,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 9, pp. 953–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Mouradian and N. Abourizk, “Diabetes mellitus and thyroid disease,” Diabetes Care, vol. 6, no. 5, pp. 512–520, 1983. View at Scopus
  43. H. E. Tamez-Perez, E. Martinez, D. L. Quintanilla-Flores, A. L. Tamez-Peña, H. Gutiérrez-Hermosillo, and E. Díaz De León-González, “The rate of primary hypothyroidism in diabetic patients is greater than in the non-diabetic population. An observational study,” Medicina Clinica, vol. 138, no. 11, pp. 475–477, 2012. View at Publisher · View at Google Scholar
  44. C. Samanic, W. H. Chow, G. Gridley, B. Jarvholm, and J. F. Fraumeni, “Relation of body mass index to cancer risk in 362,552 Swedish men,” Cancer Causes and Control, vol. 17, no. 7, pp. 901–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. G. Marrero, “The prevention of type 2 diabetes: an overview,” Journal of Diabetes Science and Technology, vol. 3, no. 4, pp. 756–760, 2009. View at Scopus
  46. C. M. Kitahara, E. A. Platz, L. E. Freeman et al., “Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 3, pp. 464–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Uddin, P. Bavi, A. K. Siraj et al., “Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 191–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. C. J. Currie, C. D. Poole, and E. A. Gale, “The influence of glucose-lowering therapies on cancer risk in type 2 diabetes,” Diabetologia, vol. 52, no. 9, pp. 1766–1777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Chen, S. Xu, K. Renko, and M. Derwahl, “Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 4, pp. E510–E520, 2012. View at Publisher · View at Google Scholar
  51. U. Smith and E. A. Gale, “Does diabetes therapy influence the risk of cancer?” Diabetologia, vol. 52, no. 9, pp. 1699–1708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. L. Bowker, S. R. Majumdar, P. Veugelers, and J. A. Johnson, “Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin,” Diabetes Care, vol. 29, no. 2, pp. 254–258, 2006. View at Scopus
  53. Y. X. Yang, S. Hennessy, and J. D. Lewis, “Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients,” Gastroenterology, vol. 127, no. 4, pp. 1044–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. L. B. Knudsen, L. W. Madsen, S. Andersen et al., “Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation,” Endocrinology, vol. 151, no. 4, pp. 1473–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. L. W. Madsen, J. A. Knauf, C. Gotfredsen et al., “GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation,” Endocrinology, vol. 153, no. 3, pp. 1538–1547, 2012. View at Publisher · View at Google Scholar
  56. D. J. Drucker, S. I. Sherman, R. M. Bergenstal, and J. B. Buse, “The safety of incretin-based therapies—review of the scientific evidence,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 7, pp. 2027–2031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. W. M. Wood, V. Sharma, K. T. Bauerle et al., “PPAR promotes growth and invasion of thyroid cancer cells,” PPAR Research, vol. 2011, Article ID 171765, 11 pages, 2011. View at Publisher · View at Google Scholar
  58. T. Stocks, K. Rapp, T. Bjorge et al., “Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (Me-Can): analysis of six prospective cohorts,” PLoS Medicine, vol. 6, no. 12, Article ID e1000201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Rapp, J. Schroeder, J. Klenk et al., “Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria,” Diabetologia, vol. 49, no. 5, pp. 945–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Cowey and R. W. Hardy, “The metabolic syndrome: a high-risk state for cancer?” American Journal of Pathology, vol. 169, no. 5, pp. 1505–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Almquist, D. Johansen, T. Bjorge et al., “Metabolic factors and risk of thyroid cancer in the metabolic syndrome and cancer project (Me-Can),” Cancer Causes and Control, vol. 22, no. 5, pp. 743–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. A. A. Tahrani, A. Ball, L. Shepherd, A. Rahim, A. F. Jones, and A. Bates, “The prevalence of vitamin D abnormalities in South Asians with type 2 diabetes mellitus in the UK,” International Journal of Clinical Practice, vol. 64, no. 3, pp. 351–355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Giovannucci, “Vitamin D status and cancer incidence and mortality,” Advances in Experimental Medicine and Biology, vol. 624, pp. 31–42, 2008. View at Publisher · View at Google Scholar · View at Scopus