About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 672013, 10 pages
http://dx.doi.org/10.1155/2012/672013
Research Article

Combined Transfection of the Three Transcriptional Factors, PDX-1, NeuroD1, and MafA, Causes Differentiation of Bone Marrow Mesenchymal Stem Cells into Insulin-Producing Cells

1Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
2Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, China

Received 24 December 2011; Revised 1 April 2012; Accepted 30 April 2012

Academic Editor: Joseph R. Landolph Jr.

Copyright © 2012 Guo Qing-Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Best, M. Carroll, N. A. Hanley, and K. Piper Hanley, “Embryonic stem cells to β-cells by understanding pancreas development,” Molecular and Cellular Endocrinology, vol. 288, no. 1-2, pp. 86–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Kim, K. H. Shin, T. Z. Li, and H. Suh, “Potential of nucleofected human MSCs for insulin secretion,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 10, pp. 761–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Li, R. Luo, J. Zhang et al., “Generating mESC-derived insulin-producing cell lines through an intermediate lineage-restricted progenitor line,” Stem Cell Research, vol. 2, no. 1, pp. 41–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Naujok, F. Francini, S. Picton, C. J. Bailey, S. Lenzen, and A. Jörns, “Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulin-producing cells in vitro and in vivo,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 5, pp. 464–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Bernardo, C. W. Hay, and K. Docherty, “Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell,” Molecular and Cellular Endocrinology, vol. 294, no. 1-2, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. S. Andrali, M. L. Smapley, N. L. Vanderford, and S. Ozcan, “Glucose regulation of insulin gene expression in pancreatic β-cells,” Biochemical Journal, vol. 415, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Karaoz, A. Aksoy, S. Ayhan, A. E. SarIboyacI, F. Kaymaz, and M. Kasap, “Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers,” Histochemistry and Cell Biology, vol. 132, no. 5, pp. 533–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Tonti and F. Mannello, “From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera?” International Journal of Developmental Biology, vol. 52, no. 8, pp. 1023–1032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Zhao, R. Wehner, M. Bornhauser, R. Wassmuth, M. Bachmann, and M. Schmitz, “Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders,” Stem Cells and Development, vol. 19, no. 5, pp. 607–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” Stem Cells, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Li, R. Zhang, H. Qiao et al., “Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 36–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Lu, Z. Wang, and M. Zhu, “Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably,” Annals of Clinical and Laboratory Science, vol. 36, no. 2, pp. 127–136, 2006. View at Scopus
  13. J. Xu, Y. Lu, F. Ding, X. Zhan, M. Zhu, and Z. Wang, “Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene,” World Journal of Surgery, vol. 31, no. 9, pp. 1872–1882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kim, C. J. Lengner, O. Kirak et al., “Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors,” Stem Cells, vol. 29, no. 6, pp. 992–1000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Ambasudhan, M. Talantova, R. Coleman et al., “Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions,” Cell Stem Cell, vol. 9, no. 2, pp. 113–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Guo, H. Li, X. Li et al., “In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells,” Stem Cells, vol. 24, no. 4, pp. 992–1000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Maxson and K. J. L. Burg, “Conditioned media cause increases in select osteogenic and adipogenic differentiation markers in mesenchymal stem cell cultures,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 2-3, pp. 147–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Minami and S. Seino, “Pancreatic acinar-to-beta cell transdifferentiation in vitro,” Frontiers in Bioscience, vol. 13, pp. 5824–5837, 2008. View at Scopus
  19. I. Meivar-Levy and S. Ferber, “Adult cell fate reprogramming: converting liver to pancreas,” Methods in Molecular Biology, vol. 636, pp. 251–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Miller, A. Kim, G. Kilimnik et al., “Islet formation during the neonatal development in mice,” PLoS ONE, vol. 4, no. 11, Article ID e7739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. W. Hay and K. Docherty, “Comparative analysis of insulin gene promoters: implications for diabetes research,” Diabetes, vol. 55, no. 12, pp. 3201–3213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Peshavaria, M. A. Cissell, E. Henderson, H. V. Petersen, and R. Stein, “The PDX-1 activation domain provides specific functions necessary for transcriptional stimulation in pancreatic β-cells,” Molecular Endocrinology, vol. 14, no. 12, pp. 1907–1917, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kaneto, T. A. Matsuoka, S. Kawashima et al., “Role of MafA in pancreatic β-cells,” Advanced Drug Delivery Reviews, vol. 61, no. 7-8, pp. 489–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. K. Hagman, L. B. Hays, S. D. Parazzoli, and V. Poitout, “Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans,” The Journal of Biological Chemistry, vol. 280, no. 37, pp. 32413–32418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Aramata, S. I. Han, K. Yasuda, and K. Kataoka, “Synergistic activation of the insulin gene promoter by the β-cell enriched transcription factors MafA, Beta2, and Pdx1,” Biochimica et Biophysica Acta, vol. 1730, no. 1, pp. 41–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Jung, M. Zheng, M. Goldfarb, and K. S. Zaret, “Initiation of mammalian liver development from endoderm by fibroblast growth factors,” Science, vol. 284, no. 5422, pp. 1998–2003, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Suzuki, Y. W. Zheng, S. Kaneko et al., “Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver,” Journal of Cell Biology, vol. 156, no. 1, pp. 173–184, 2002. View at Publisher · View at Google Scholar · View at Scopus