About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 764017, 13 pages
http://dx.doi.org/10.1155/2012/764017
Review Article

The Use of Functional MRI to Study Appetite Control in the CNS

1Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
2GlaxoSmithKline Global Imaging Unit, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
3Centre for Neuroscience, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK

Received 1 February 2012; Accepted 28 April 2012

Academic Editor: Alain Ktorza

Copyright © 2012 Akila De Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. von Ruesten, A. Steffen, A. Floegel et al., “Trend in obesity prevalence in European adult cohort populations during follow-up since 1996 and their predictions to 2015,” PLoS ONE, vol. 6, no. 11, Article ID e27455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Valentino, F. Colon-Gonzalez, J. E. Lin, and S. A. Waldman, “Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity,” Expert Review of Endocrinology and Metabolism, vol. 5, no. 5, pp. 765–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. H. Sam, R. C. Troke, T. M. Tan, and G. A. Bewick, “The role of the gut/brain axis in modulating food intake,” Neuropharmacology, vol. 63, no. 1, pp. 46–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Ritter, “Gastrointestinal mechanisms of satiation for food,” Physiology and Behavior, vol. 81, no. 2, pp. 249–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Gautron and J. K. Elmquist, “Sixteen years and counting: an update on leptin in energy balance,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2087–2093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Thaler and M. W. Schwartz, “Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up,” Endocrinology, vol. 151, no. 9, pp. 4109–4115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-R. Berthoud, “Metabolic and hedonic drives in the neural control of appetite: who is the boss?” Current Opinion in Neurobiology, vol. 21, no. 6, pp. 888–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Carnell, C. Gibson, L. Benson, C. N. Ochner, and A. Geliebter, “Neuroimaging and obesity: current knowledge and future directions,” Obesity Reviews, vol. 13, no. 1, pp. 43–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. C. D. Gibson, S. Carnell, C. N. Ochner, and A. Geliebter, “Neuroimaging, gut peptides and obesity: novel studies of the neurobiology of appetite,” Journal of Neuroendocrinology, vol. 22, no. 8, pp. 833–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. van Vugt, “Brain imaging studies of appetite in the context of obesity and the menstrual cycle,” Human Reproduction Update, vol. 16, no. 3, Article ID dmp051, pp. 276–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. K. Kwong, J. W. Belliveau, D. A. Chesler et al., “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5675–5679, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ogawa, D. W. Tank, R. Menon et al., “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 5951–5955, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. J. G. Ojemann, E. Akbudak, A. Z. Snyder, R. C. McKinstry, M. E. Raichle, and T. E. Conturo, “Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts,” NeuroImage, vol. 6, no. 3, pp. 156–167, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. B. B. Biswal, J. Van Kylen, and J. S. Hyde, “Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps,” NMR in Biomedicine, vol. 10, no. 4-5, pp. 165–170, 1997. View at Scopus
  15. R. L. Batterham, D. H. Ffytche, J. M. Rosenthal et al., “PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans,” Nature, vol. 450, no. 7166, pp. 106–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Suzuki, K. A. Simpson, J. S. Minnion, J. C. Shillito, and S. R. Bloom, “The role of gut hormones and the hypothalamus in appetite regulation,” Endocrine Journal, vol. 57, no. 5, pp. 359–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. E. C. Wong, R. B. Buxton, and L. R. Frank, “Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling,” NMR in Biomedicine, vol. 10, no. 4-5, pp. 237–249, 1997. View at Scopus
  18. M. Matsuda, Y. Liu, S. Mahankali et al., “Altered hypothalamic function in response to glucose ingestion in obese humans,” Diabetes, vol. 48, no. 9, pp. 1801–1806, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Liu, G. Jia-Hong, H. L. Liu, and P. T. Fox, “The temporal response of the brain after eating revealed by functional MRI,” Nature, vol. 405, no. 6790, pp. 1058–1062, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. P. A. M. Smeets, C. De Graaf, A. Stafleu, M. J. P. Van Osch, and J. Van Der Grond, “Functional MRI of human hypothalamic responses following glucose ingestion,” NeuroImage, vol. 24, no. 2, pp. 363–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. A. M. Smeets, C. De Graaf, A. Stafleu, M. J. P. Van Osch, and J. Van Der Grond, “Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 1011–1016, 2005. View at Scopus
  22. S. Vidarsdottir, P. A. M. Smeets, D. L. Eichelsheim et al., “Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes,” Diabetes, vol. 56, no. 10, pp. 2547–2550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. A. M. Smeets, S. Vidarsdottir, C. De Graaf et al., “Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion,” American Journal of Physiology, vol. 293, no. 3, pp. E754–E758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Q. Purnell, B. A. Klopfenstein, A. A. Stevens et al., “Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans,” Diabetes, Obesity and Metabolism, vol. 13, no. 3, pp. 229–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. A. Tataranni, J. F. Gautier, K. Chen et al., “Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4569–4574, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Gautier, A. Del Parigi, K. Chen et al., “Effect of satiation on brain activity in obese and lean women,” Obesity Research, vol. 9, no. 11, pp. 676–684, 2001. View at Scopus
  27. D. M. Small, R. J. Zatorre, A. Dagher, A. C. Evans, and M. Jones-Gotman, “Changes in brain activity related to eating chocolate: from pleasure to aversion,” Brain, vol. 124, no. 9, pp. 1720–1733, 2001. View at Scopus
  28. G. J. Wang, N. D. Volkow, F. Telang et al., “Exposure to appetitive food stimuli markedly activates the human brain,” NeuroImage, vol. 21, no. 4, pp. 1790–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. LaBar, D. R. Gitelman, T. B. Parrish, Y. H. Kim, A. C. Nobre, and M. M. Mesulam, “Hunger selectively modulates corticolimbic activation to food stimuli in humans,” Behavioral Neuroscience, vol. 115, no. 2, pp. 493–500, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. W. D. S. Killgore, A. D. Young, L. A. Femia, P. Bogorodzki, J. Rogowska, and D. A. Yurgelun-Todd, “Cortical and limbic activation during viewing of high- versus low-calorie foods,” NeuroImage, vol. 19, no. 4, pp. 1381–1394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. W. D. S. Killgore and D. A. Yurgelun-Todd, “Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods,” NeuroReport, vol. 16, no. 8, pp. 859–863, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Kringelbach, “The human orbitofrontal cortex: linking reward to hedonic experience,” Nature Reviews Neuroscience, vol. 6, no. 9, pp. 691–702, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. P. St-Onge, M. Sy, S. B. Heymsfield, and J. Hirsch, “Human cortical specialization for food: a functional magnetic resonance imaging investigation,” Journal of Nutrition, vol. 135, no. 5, pp. 1014–1018, 2005. View at Scopus
  34. K. Porubská, R. Veit, H. Preissl, A. Fritsche, and N. Birbaumer, “Subjective feeling of appetite modulates brain activity. An fMRI study,” NeuroImage, vol. 32, no. 3, pp. 1273–1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Menon and L. Q. Uddin, “Saliency, switching, attention and control: a network model of insula function.,” Brain Structure & Function, vol. 214, no. 5-6, pp. 655–667, 2010. View at Scopus
  36. D. Führer, S. Zysset, and M. Stumvoll, “Brain activity in hunger and satiety: an exploratory visually stimulated fMRI study,” Obesity, vol. 16, no. 5, pp. 945–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. De Silva, V. Salem, C. J. Long et al., “The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans,” Cell Metabolism, vol. 14, no. 5, pp. 700–706, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. A. Baldo and A. E. Kelley, “Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding,” Psychopharmacology, vol. 191, no. 3, pp. 439–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Goldstone, C. G. Prechtl De Hernandez, J. D. Beaver et al., “Fasting biases brain reward systems towards high-calorie foods,” European Journal of Neuroscience, vol. 30, no. 8, pp. 1625–1635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. A. Schur, N. M. Kleinhans, J. Goldberg, D. Buchwald, M. W. Schwartz, and K. Maravilla, “Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus,” International Journal of Obesity, vol. 33, no. 6, pp. 653–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Siep, A. Roefs, A. Roebroeck, R. Havermans, M. L. Bonte, and A. Jansen, “Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex,” Behavioural Brain Research, vol. 198, no. 1, pp. 149–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Wallner-Liebmann, K. Koschutnig, G. Reishofer et al., “Insulin and hippocampus activation in response to images of high-calorie food in normal weight and obese adolescents.,” Obesity, vol. 18, no. 8, pp. 1552–1557, 2010. View at Scopus
  43. Y. Rothemund, C. Preuschhof, G. Bohner et al., “Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals,” NeuroImage, vol. 37, no. 2, pp. 410–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. L. E. Stoeckel, R. E. Weller, E. W. Cook, D. B. Twieg, R. C. Knowlton, and J. E. Cox, “Widespread reward-system activation in obese women in response to pictures of high-calorie foods,” NeuroImage, vol. 41, no. 2, pp. 636–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. L. E. Stoeckel, J. Kim, R. E. Weller, J. E. Cox, E. W. Cook, and B. Horwitz, “Effective connectivity of a reward network in obese women,” Brain Research Bulletin, vol. 79, no. 6, pp. 388–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. L. E. Martin, L. M. Holsen, R. J. Chambers et al., “Neural mechanisms associated with food motivation in obese and healthy weight adults,” Obesity, vol. 18, no. 2, pp. 254–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Dimitropoulos, J. Tkach, A. Ho, and J. Kennedy, “Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults,” Appetite, vol. 58, no. 1, pp. 303–312, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Stice, S. Spoor, C. Bohon, M. G. Veldhuizen, and D. M. Small, “Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study,” Journal of Abnormal Psychology, vol. 117, no. 4, pp. 924–935, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Stice, S. Yokum, K. Blum, and C. Bohon, “Weight gain is associated with reduced striatal response to palatable food,” Journal of Neuroscience, vol. 30, no. 39, pp. 13105–13109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. S. Bruce, L. M. Holsen, R. J. Chambers et al., “Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control,” International Journal of Obesity, vol. 34, no. 10, pp. 1494–1500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Verdich, A. Flint, J. P. Gutzwiller et al., “A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on Ad Libitum energy intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4382–4389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. R. L. Batterham, M. A. Cowley, C. J. Small et al., “Gut hormone PYY3-36 physiologically inhibits food intake,” Nature, vol. 418, no. 6898, pp. 650–654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Sloth, J. J. Holst, A. Flint, N. T. Gregersen, and A. Astrup, “Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects,” American Journal of Physiology, vol. 292, no. 4, pp. E1062–E1068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. M. R. Druce, A. M. Wren, A. J. Park et al., “Ghrelin increases food intake in obese as well as lean subjects,” International Journal of Obesity, vol. 29, no. 9, pp. 1130–1136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Malik, F. McGlone, D. Bedrossian, and A. Dagher, “Ghrelin modulates brain activity in areas that control appetitive behavior,” Cell Metabolism, vol. 7, no. 5, pp. 400–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Porte and S. C. Woods, “Regulation of food intake and body weight by insulin,” Diabetologia, vol. 20, pp. 274–280, 1981. View at Scopus
  57. M. Guthoff, Y. Grichisch, C. Canova et al., “Insulin modulates food-related activity in the central nervous system,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 748–755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. A. Williamson, E. Ravussin, M. L. Wong et al., “Microanalysis of eating behavior of three leptin deficient adults treated with leptin therapy,” Appetite, vol. 45, no. 1, pp. 75–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Sadaf Farooqi, E. Bullmore, J. Keogh, J. Gillard, S. O'Rahilly, and P. C. Fletcher, “Leptin regulates striatal regions and human eating behavior,” Science, vol. 317, no. 5843, p. 1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Baicy, E. D. London, J. Monterosso et al., “Leptin replacement alters brain response to food cues in genetically leptin-deficient adults,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18276–18279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Rosenbaum, M. Sy, K. Pavlovich, R. L. Leibel, and J. Hirsch, “Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2583–2591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Maggard, L. R. Shugarman, M. Suttorp et al., “Meta-analysis: surgical treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 547–559, 2005. View at Scopus
  63. J. A. Tice, L. Karliner, J. Walsh, A. J. Petersen, and M. D. Feldman, “Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures,” American Journal of Medicine, vol. 121, no. 10, pp. 885–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. C. M. Borg, C. W. Le Roux, M. A. Ghatei, S. R. Bloom, A. G. Patel, and S. J. B. Aylwin, “Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety,” British Journal of Surgery, vol. 93, no. 2, pp. 210–215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. C. W. Le Roux, S. J. B. Aylwin, R. L. Batterham et al., “Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters,” Annals of Surgery, vol. 243, no. 1, pp. 108–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. C. W. Le Roux, R. Welbourn, M. Werling et al., “Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass,” Annals of Surgery, vol. 246, no. 5, pp. 780–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Nestoridi, S. Kvas, J. Kucharczyk, and N. Stylopoulos, “Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice,” Endocrinology, vol. 153, no. 5, pp. 2234–2244, 2012.
  68. M. Bueter, A. D. Miras, H. Chichger et al., “Alterations of sucrose preference after Roux-en-Y gastric bypass,” Physiology and Behavior, vol. 104, no. 5, pp. 709–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. C. W. le Roux, M. Bueter, N. Theis et al., “Gastric bypass reduces fat intake and preference,” American Journal of Physiology, vol. 301, no. 4, pp. R1057–R1066, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. E. Patti, S. M. Houten, A. C. Bianco et al., “Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism,” Obesity, vol. 17, no. 9, pp. 1671–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. V. Li, H. Ashrafian, M. Bueter et al., “Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk,” Gut, vol. 60, pp. 1214–1223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Van De Sande-Lee, F. R. S. Pereira, D. E. Cintra et al., “Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects,” Diabetes, vol. 60, no. 6, pp. 1699–1704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. N. Ochner, Y. Kwok, E. Conceição et al., “Selective reduction in neural responses to high calorie foods following gastric bypass surgery,” Annals of Surgery, vol. 253, no. 3, pp. 502–507, 2011. View at Publisher · View at Google Scholar · View at Scopus