About this Journal Submit a Manuscript Table of Contents
Experimental Diabetes Research
Volume 2012 (2012), Article ID 789174, 12 pages
http://dx.doi.org/10.1155/2012/789174
Review Article

Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms

1Department of Health Sciences, Magna Græcia University of Catanzaro, Viale Europa (Località Germaneto), 88100 Catanzaro, Italy
2Clinical Pathology, Magna Græcia University of Catanzaro, Viale Europa (Località Germaneto), 88100 Catanzaro, Italy
3Endocrinology, Magna Græcia University of Catanzaro, Viale Europa (Località Germaneto), 88100 Catanzaro, Italy

Received 29 January 2012; Accepted 10 April 2012

Academic Editor: Chien-Jen Chen

Copyright © 2012 Biagio Arcidiacono et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Scopus
  2. R. A. Defronzo, “From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus,” Diabetes, vol. 58, no. 4, pp. 773–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Rao, “Insulin resistance syndrome,” American Family Physician, vol. 63, no. 6, pp. 1159–1163, 2001. View at Scopus
  4. E. J. Mayer, B. Newman, M. A. Austin et al., “Genetic and environmental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins,” The American Journal of Epidemiology, vol. 143, no. 4, pp. 323–332, 1996. View at Scopus
  5. R. H. Unger, “Reinventing type 2 diabetes: pathogenesis, treatment, and prevention,” Journal of the American Medical Association, vol. 299, no. 10, pp. 1185–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. K. Semple, D. B. Savage, E. K. Cochran, P. Gorden, and S. O'Rahilly, “Genetic syndromes of severe insulin resistance,” Endocrine Reviews, vol. 32, no. 4, pp. 498–514, 2011.
  7. H. E. Resnick, K. Jones, G. Ruotolo et al., “Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic American Indians: The Strong Heart Study,” Diabetes Care, vol. 26, no. 3, pp. 861–867, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. L. Hanson, G. Imperatore, P. H. Bennett, and W. C. Knowler, “Components of the “metabolic syndrome” and incidence of type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 3120–3127, 2002. View at Scopus
  9. S. Cowey and R. W. Hardy, “The metabolic syndrome: a high-risk state for cancer?” American Journal of Pathology, vol. 169, no. 5, pp. 1505–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Kaaks and A. Lukanova, “Energy balance and cancer: the role of insulin and insulin-like growth factor-I,” Proceedings of the Nutrition Society, vol. 60, no. 1, pp. 91–106, 2001. View at Scopus
  11. M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Frasca, G. Pandini, P. Scalia et al., “Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3278–3288, 1999. View at Scopus
  13. P. Vigneri, F. Frasca, L. Sciacca, G. Pandini, and R. Vigneri, “Diabetes and cancer,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1103–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Giovannucci, D. M. Harlan, M. C. Archer et al., “Diabetes and cancer: a consensus report,” Diabetes Care, vol. 33, no. 7, pp. 1674–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. I. D. Goldfine, “The insulin receptor: molecular biology and transmembrane signaling,” Endocrine Reviews, vol. 8, no. 3, pp. 235–255, 1987. View at Scopus
  16. A. Ullrich, J. R. Bell, E. Y. Chen, et al., “Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes,” Nature, vol. 313, no. 6005, pp. 756–761, 1985. View at Scopus
  17. M. F. White and C. R. Kahn, “The insulin signaling system,” The Journal of Biological Chemistry, vol. 269, no. 1, pp. 1–4, 1994. View at Scopus
  18. O. M. Rosen, “Structure and function of insulin receptors,” Diabetes, vol. 38, no. 12, pp. 1508–1511, 1989. View at Scopus
  19. A. A. Samani, S. Yakar, D. LeRoith, and P. Brodt, “The role of the IGF system in cancer growth and metastasis: overview and recent insights,” Endocrine Reviews, vol. 28, no. 1, pp. 20–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. K. Singh, C. Brito, Q. W. Tan, M. De León, and D. De León, “Differential expression and signaling activation of insulin receptor isoforms A and B: a link between breast cancer and diabetes?” Growth Factors, vol. 29, no. 6, pp. 278–289, 2011.
  21. A. Denley, J. C. Wallace, L. J. Cosgrove, and B. E. Forbes, “The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review,” Hormone and Metabolic Research, vol. 35, no. 11-12, pp. 778–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. I. Taylor, “Deconstructing type 2 diabetes,” Cell, vol. 97, no. 1, pp. 9–12, 1999. View at Scopus
  23. R. A. DeFronzo, D. Simonson, and E. Ferrannini, “Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus,” Diabetologia, vol. 23, no. 4, pp. 313–319, 1982. View at Scopus
  24. C. B. Hollenbeck, Y. D. Chen, and G. M. Reaven, “A comparison of the relative effects of obesity and non-insulin-dependent diabetes mellitus on in vivo insulin-stimulated glucose utilization,” Diabetes, vol. 33, no. 7, pp. 622–626, 1984. View at Scopus
  25. S. B. Biddinger and C. R. Kahn, “From mice to men: insights into the insulin resistance syndromes,” Annual Review of Physiology, vol. 68, pp. 123–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Foti, E. Chiefari, M. Fedele et al., “Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice,” Nature Medicine, vol. 11, no. 7, pp. 765–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Chiefari, S. Tanyolaç, F. Paonessa et al., “Functional variants of the HMGA1 gene and type 2 diabetes mellitus,” Journal of the American Medical Association, vol. 305, no. 9, pp. 903–912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Massoner, M. Ladurner-Rennau, I. E. Eder, and H. Klocker, “Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer,” British Journal of Cancer, vol. 103, no. 10, pp. 1479–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Frasca, G. Pandini, L. Sciacca et al., “The role of insulin receptors and IGF-I receptors in cancer and other diseases,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 23–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Papa, V. Pezzino, A. Costantino et al., “Elevated insulin receptor content in human breast cancer,” Journal of Clinical Investigation, vol. 86, no. 5, pp. 1503–1510, 1990. View at Scopus
  31. J. H. Law, G. Habibi, K. Hu et al., “Phosphorylated insulin-like growth factor-I/insulin receptor is present in all breast cancer subtypes and is related to poor survival,” Cancer Research, vol. 68, no. 24, pp. 10238–10246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. Kalli, O. I. Falowo, L. K. Bale, M. A. Zschunke, P. C. Roche, and C. A. Conover, “Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling,” Endocrinology, vol. 143, no. 9, pp. 3259–3267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. E. Cox, M. E. Gleave, M. Zakikhani et al., “Insulin receptor expression by human prostate cancers,” Prostate, vol. 69, no. 1, pp. 33–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Schiel, W. Beltschikow, T. Steiner, and G. Stein, “Diabetes, insulin, and risk of cancer,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 28, no. 3, pp. 169–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Giovannucci and D. Michaud, “The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas,” Gastroenterology, vol. 132, no. 6, pp. 2208–2225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Osborne, G. Bolan, M. E. Monaco, and M. E. Lippman, “Hormone responsive human breast cancer in long term tissue culture: effect of insulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 12, pp. 4536–4540, 1976. View at Scopus
  37. F. Paonessa, D. Foti, V. Costa et al., “Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer,” Cancer Research, vol. 66, no. 10, pp. 5085–5093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kolb, R. Fritsch, D. Saur, M. Reichert, R. M. Schmid, and G. Schneider, “HMGA1 controls transcription of insulin receptor to regulate cyclin D1 translation in pancreatic cancer cells,” Cancer Research, vol. 67, no. 10, pp. 4679–4686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. D. P. Foti, F. Paonessa, E. Chiefari, and A. Brunetti, “New target genes for the peroxisome proliferator-activated receptor- (PPAR ) antitumour activity: perspectives from the insulin receptor,” PPAR Research, Article ID 571365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Scopus
  41. E. Mueller, P. Sarraf, P. Tontonoz et al., “Terminal differentiation of human breast cancer through PPARγ,” Molecular Cell, vol. 1, no. 3, pp. 465–470, 1998. View at Scopus
  42. V. Costa, D. Foti, F. Paonessa et al., “The insulin receptor: a new anticancer target for peroxisome proliferator-activated receptor-γ (PPARγ) and thiazolidinedione- PPARγ agonists,” Endocrine-Related Cancer, vol. 15, no. 1, pp. 325–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. W. Mamula, A. R. McDonald, A. Brunetti et al., “Regulating insulin-receptor-gene expression by differentiation and hormones,” Diabetes Care, vol. 13, no. 3, pp. 288–301, 1990. View at Scopus
  44. E. Araki, F. Shimada, H. Uzawa, M. Mori, and Y. Ebina, “Characterization of the promoter region of the human insulin receptor gene: evidence for promoter activity,” The Journal of Biological Chemistry, vol. 262, no. 33, pp. 16186–16191, 1987. View at Scopus
  45. S. Seino, M. Seino, S. Nishi, and G. I. Bell, “Structure of the human insulin receptor gene and characterization of its promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 1, pp. 114–118, 1989. View at Scopus
  46. A. Brunetti, D. Foti, and I. D. Goldfine, “Identification of unique nuclear regulatory proteins for the insulin receptor gene, which appear during myocyte and adipocyte differentiation,” Journal of Clinical Investigation, vol. 92, no. 3, pp. 1288–1295, 1993. View at Scopus
  47. M. Bustin and R. Reeves, “High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function,” Progress in Nucleic Acid research and Molecular Biology, vol. 54, pp. 35–100, 1996. View at Scopus
  48. R. Reeves and L. Beckerbauer, “HMGI/Y proteins: flexible regulators of transcription and chromatin structure,” Biochimica et Biophysica Acta, vol. 1519, no. 1-2, pp. 13–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Merika and D. Thanos, “Enhanceosomes,” Current Opinion in Genetics and Development, vol. 11, no. 2, pp. 205–208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Brunetti, G. Manfioletti, E. Chiefari, I. D. Goldfine, and D. Foti, “Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y),” The FASEB Journal, vol. 15, no. 2, pp. 492–500, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Foti, R. Iuliano, E. Chiefari, and A. Brunetti, “A nucleoprotein complex containing Sp1, C/EBPβ, and HMGI-Y controls human insulin receptor gene transcription,” Molecular and Cellular Biology, vol. 23, no. 8, pp. 2720–2732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. C. K. Osborne, M. E. Monaco, M. E. Lippman, and C. R. Kahn, “Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long term tissue culture,” Cancer Research, vol. 38, no. 1, pp. 94–102, 1978. View at Scopus
  53. G. Milazzo, F. Giorgino, G. Damante et al., “Insulin receptor expression and function in human breast cancer cell lines,” Cancer Research, vol. 52, no. 14, pp. 3924–3930, 1992. View at Scopus
  54. N. R. Farid, Y. Shi, and M. Zou, “Molecular basis of thyroid cancer,” Endocrine Reviews, vol. 15, no. 2, pp. 202–232, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. J. I. Jones and D. R. Clemmons, “Insulin-like growth factors and their binding proteins: biological actions,” Endocrine Reviews, vol. 16, no. 1, pp. 3–34, 1995. View at Scopus
  56. D. R. Clemmons and L. E. Underwood, “Nutritional regulation of IGF-I and IGF binding proteins,” Annual Review of Nutrition, vol. 11, pp. 393–412, 1991. View at Scopus
  57. D. S. Straus, “Nutritional regulation of hormones and growth factors that control mammalian growth,” The FASEB Journal, vol. 8, no. 1, pp. 6–12, 1994. View at Scopus
  58. J. P. Thissen, J. M. Ketelslegers, and L. E. Underwood, “Nutritional regulation of the insulin-like growth factors,” Endocrine Reviews, vol. 15, no. 1, pp. 80–101, 1994. View at Publisher · View at Google Scholar · View at Scopus
  59. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  60. D. R. Clemmons, “Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer,” Nature Reviews Drug Discovery, vol. 6, no. 10, pp. 821–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Soos, J. Whittaker, R. Lammers, A. Ullrich, and K. Siddle, “Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells,” The Biochemical Journal, vol. 270, no. 2, pp. 383–390, 1990. View at Scopus
  62. A. Ullrich, A. Gray, A. W. Tam et al., “Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity,” The EMBO Journal, vol. 5, no. 10, pp. 2503–2512, 1986. View at Scopus
  63. R. Drakas, X. Tu, and R. Baserga, “Control of cell size through phosphorylation of upstream binding factor 1 by nuclear phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9272–9276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. C. R. Kahn, “The Gordon Wilson Lecture. Lessons about the control of glucose homeostasis and the pathogenesis of diabetes from knockout mice,” Transactions of the American Clinical and Climatological Association, vol. 114, pp. 125–148, 2003. View at Scopus
  65. F. P. Ottensmeyer, D. R. Beniac, R. Z.-T. Luo, and C. C. Yip, “Mechanism of transmembrane signaling: insulin binding and the insulin receptor,” Biochemistry, vol. 39, no. 40, pp. 12103–12112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. J. B. Carvalheira, H. G. Zecchin, and M. J. Saad, “Vias de sinalização da insulina,” Arquivos Brasileiros de Endocrinologia & Metabologia, vol. 46, no. 4, pp. 419–425, 2002.
  67. L. C. Cantley, “The phosphoinositide 3-kinase pathway,” Science, vol. 296, no. 5573, pp. 1655–1657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Barthel, D. Schmoll, and T. G. Unterman, “FoxO proteins in insulin action and metabolism,” Trends in Endocrinology and Metabolism, vol. 16, no. 4, pp. 183–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Zou, W. B. Tsai, C. J. Cheng et al., “Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis,” Breast Cancer Research, vol. 10, no. 1, article R21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Inoki, Y. Li, T. Zhu, J. Wu, and K. L. Guan, “TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling,” Nature Cell Biology, vol. 4, no. 9, pp. 648–657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Osório-Costa, G. Z. Rocha, M. M. Dias, and J. B. C. Carvalheira, “Epidemiological and molecular mechanisms aspects linking obesity and cancer,” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 53, no. 2, pp. 213–226, 2009. View at Scopus
  74. V. Stambolic, A. Suzuki, J. L. de la Pompa et al., “Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN,” Cell, vol. 95, no. 1, pp. 29–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Simpson and R. Parsons, “PTEN: life as a tumor suppressor,” Experimental Cell Research, vol. 264, no. 1, pp. 29–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. B. P. Ceresa and J. E. Pessin, “Insulin regulation of the Ras activation/inactivation cycle,” Molecular and Cellular Biochemistry, vol. 182, no. 1-2, pp. 23–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Brunet, D. Roux, P. Lenormand, S. Dowd, S. Keyse, and J. Pouysségur, “Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry,” The EMBO Journal, vol. 18, no. 3, pp. 664–674, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. P. P. Roux and J. Blenis, “ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 320–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. L. O. Murphy and J. Blenis, “MAPK signal specificity: the right place at the right time,” Trends in Biochemical Sciences, vol. 31, no. 5, pp. 268–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. P. D. Ryan and P. E. Goss, “The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer,” Oncologist, vol. 13, no. 1, pp. 16–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. H. B. El-Serag, H. Hampel, and F. Javadi, “The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence,” Clinical Gastroenterology and Hepatology, vol. 4, no. 3, pp. 369–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Wang, X. Wang, G. Gong et al., “Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies,” International Journal of Cancer, vol. 7, no. 6, pp. 1639–1648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Friberg, N. Orsini, C. S. Mantzoros, and A. Wolk, “Diabetes mellitus and risk of endometrial cancer: a meta-analysis,” Diabetologia, vol. 50, no. 7, pp. 1365–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Huxley, A. Ansary-Moghaddam, A. Berrington de González, F. Barzi, and M. Woodward, “Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies,” British Journal of Cancer, vol. 92, no. 11, pp. 2076–2083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Li, H. Tang, M. M. Hassan, E. A. Holly, P. M. Bracci, and D. T. Silverman, “Diabetes and risk of pancreatic cancer: a pooled analysis of three large case-control studies,” Cancer Causes and Control, vol. 22, no. 2, pp. 189–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. Q. Ben, M. Xu, X. Ning et al., “Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies,” European Journal of Cancer, vol. 47, no. 13, pp. 1928–1937, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. S. C. Larsson and A. Wolk, “Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies,” Diabetologia, vol. 54, no. 5, pp. 1013–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. H. B. Ren, T. Yu, C. Liu, and Y. Q. Li, “Diabetes mellitus and increased risk of biliary tract cancer: systematic review and meta-analysis,” Cancer Causes and Control, vol. 22, no. 6, pp. 837–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Jing, G. Jin, and X. Zhou, “Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis,” European Journal of Cancer Prevention, vol. 21, no. 1, pp. 24–31, 2011.
  90. S. C. Larsson, N. Orsini, K. Brismar, and A. Wolk, “Diabetes mellitus and risk of bladder cancer: a meta-analysis,” Diabetologia, vol. 49, no. 12, pp. 2819–2823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. C. Larsson, N. Orsini, and A. Wolk, “Diabetes mellitus and risk of colorectal cancer: a meta-analysis,” Journal of the National Cancer Institute, vol. 97, no. 22, pp. 1679–1687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Yuhara, C. Steinmaus, S. E. Cohen, D. A. Corley, Y. Tei, and P. A. Buffler, “Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer?” The American Journal of Gastroenterology, vol. 106, no. 11, pp. 1911–1921, 2011.
  93. W. Huang, H. Ren, Q. Ben, Q. Cai, W. Zhu, and Z. Li, “Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies,” Cancer Causes and Control, vol. 18, pp. 263–272, 2011.
  94. J. Mitri, J. Castillo, and A. G. Pittas, “Diabetes and risk of non-hodgkin's lymphoma: a meta-analysis of observational studies,” Diabetes Care, vol. 31, no. 12, pp. 2391–2397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Chao and J. H. Page, “Type 2 diabetes mellitus and risk of non-hodgkin lymphoma: a systematic review and meta-analysis,” The American Journal of Epidemiology, vol. 168, no. 5, pp. 471–480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. C. Larsson, C. S. Mantzoros, and A. Wolk, “Diabetes mellitus and risk of breast cancer: a meta-analysis,” International Journal of Cancer, vol. 121, no. 4, pp. 856–862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Tilg and A. R. Moschen, “Adipocytokines: mediators linking adipose tissue, inflammation and immunity,” Nature Reviews Immunology, vol. 6, no. 10, pp. 772–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Vona-Davis and D. P. Rose, “Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 189–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Iyengar, T. P. Combs, S. J. Shah et al., “Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization,” Oncogene, vol. 22, no. 41, pp. 6408–6423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Macciò and C. Madeddu, “Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications,” The Scientific World Journal, vol. 11, pp. 2020–2036, 2011.
  103. G. Fantuzzi, “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 911–919, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Li, H. J. Shin, E. L. Ding, and R. M. van Dam, “Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis,” Journal of the American Medical Association, vol. 302, no. 2, pp. 179–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Schäffler, J. Schölmerich, and C. Buechler, “Mechanisms of disease: adipokines and breast cancer—endocrine and paracrine mechanisms that connect adiposity and breast cancer,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 4, pp. 345–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Pignatelli, C. Cocca, A. Santos, and A. Perez-Castillo, “Enhancement of BRCA1 gene expression by the peroxisome proliferator-activated receptor γ in the MCF-7 breast cancer cell line,” Oncogene, vol. 22, no. 35, pp. 5446–5450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. F. Sotgia, U. E. Martinez-Outschoorn, and M. P. Lisanti, “Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?” BMC Medicine, vol. 9, article 62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. S. D. Hursting and N. A. Berger, “Energy balance, host-related factors, and cancer progression,” Journal of Clinical Oncology, vol. 28, no. 26, pp. 4058–4065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Bubici, S. Papa, K. Dean, and G. Franzoso, “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance,” Oncogene, vol. 25, no. 51, pp. 6731–6748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Chiavarina, D. Whitaker-Menezes, G. Migneco et al., “HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis,” Cell Cycle, vol. 9, no. 17, pp. 3534–3551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. U. E. Martinez-Outschoorn, R. M. Balliet, D. B. Rivadeneira et al., “Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells,” Cell Cycle, vol. 9, no. 16, pp. 3256–3276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Tuncman, J. Hirosumi, G. Solinas, L. Chang, M. Karin, and G. S. Hotamisligil, “Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10741–10746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. C. A. Curat, A. Miranville, C. Sengenès et al., “From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes,” Diabetes, vol. 53, no. 5, pp. 1285–1292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Aron-Wisnewsky, C. Minville, J. Tordjman, et al., “Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese,” Journal of Hepatology, vol. 56, no. 1, pp. 225–233, 2012.
  116. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. G. S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. F. White, and B. M. Spiegelman, “IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance,” Science, vol. 271, no. 5249, pp. 665–668, 1996. View at Scopus
  118. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Scopus
  119. H. Yu, D. Pardoll, and R. Jove, “STATs in cancer inflammation and immunity: a leading role for STAT3,” Nature Reviews Cancer, vol. 9, no. 11, pp. 798–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Vozarova, C. Weyer, K. Hanson, P. A. Tataranni, C. Bogardus, and R. E. Pratley, “Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion,” Obesity Research, vol. 9, no. 7, pp. 414–417, 2001. View at Scopus
  121. G. Gonullu, C. Ersoy, A. Ersoy et al., “Relation between insulin resistance and serum concentrations of IL-6 and TNF-α in overweight or obese women with early stage breast cancer,” Cytokine, vol. 31, no. 4, pp. 264–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. M. J. Khandekar, P. Cohen, and B. M. Spiegelman, “Molecular mechanisms of cancer development in obesity,” Nature Reviews Cancer, vol. 11, pp. 886–895, 2011.
  123. L. Zheng, H. Dai, M. Zhou et al., “Fen1 mutations result in autoimmunity, chronic inflammation and cancers,” Nature Medicine, vol. 13, no. 7, pp. 812–819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Vakkila and M. T. Lotze, “Inflammation and necrosis promote tumour growth,” Nature Reviews Immunology, vol. 4, no. 8, pp. 641–648, 2004. View at Scopus
  125. H. P. Hammes, S. Martin, K. Federlin, K. Geisen, and M. Brownlee, “Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11555–11558, 1991. View at Scopus
  126. I. Giardino, D. Edelstein, and M. Brownlee, “Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 110–117, 1994. View at Scopus