About this Journal Submit a Manuscript Table of Contents
Journal of Diabetes Research
Volume 2013 (2013), Article ID 498925, 13 pages
http://dx.doi.org/10.1155/2013/498925
Research Article

Glomerulopathy in the KK.Cg-Ay/J Mouse Reflects the Pathology of Diabetic Nephropathy

Tissue Protection and Repair, Genzyme, A Sanofi Company, 49 New York Ave., Framingham, MA 01701, USA

Received 23 January 2013; Accepted 15 March 2013

Academic Editor: Daisuke Koya

Copyright © 2013 Stephen P. O'Brien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Collins, R. N. Foley, B. Chavers, et al., “US renal data system 2011 Annual data report,” American Journal of Kidney Diseases, vol. 59, no. 1, pp. e1–e26, 2012. View at Publisher · View at Google Scholar
  2. A. Whaley-Connell, J. R. Sowers, P. A. McCullough et al., “Diabetes mellitus and CKD awareness: the kidney early evaluation program (KEEP) and national health and nutrition examination survey (NHANES),” American Journal of Kidney Diseases, vol. 53, no. 4, pp. S11–S21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Fioretto and M. Mauer, “Histopathology of diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 195–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. W. C. Tervaert, A. L. Mooyaart, K. Amann et al., “Pathologic classification of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 4, pp. 556–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. Reddy, K. Kotlyarevska, R. F. Ransom, and R. K. Menon, “The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy?” Current Opinion in Nephrology and Hypertension, vol. 17, no. 1, pp. 32–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Makino, Y. Miyamoto, K. Sawai et al., “Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone,” Diabetes, vol. 55, no. 10, pp. 2747–2756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Toyoda, B. Najafian, Y. Kim, M. L. Caramori, and M. Mauer, “Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy,” Diabetes, vol. 56, no. 8, pp. 2155–2160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. E. Pagtalunan, P. L. Miller, S. Jumping-Eagle et al., “Podocyte loss and progressive glomerular injury in type II diabetes,” Journal of Clinical Investigation, vol. 99, no. 2, pp. 342–348, 1997. View at Scopus
  9. K. E. White, R. W. Bilous, and On Behalf of the Diabiopsies Study Group, “Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients,” Nephrology Dialysis Transplantation, vol. 19, no. 6, pp. 1437–1440, 2004. View at Publisher · View at Google Scholar
  10. M. D. Breyer, E. Böttinger, F. C. Brosius et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 27–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. C. Brosius, C. E. Alpers, E. P. Bottinger et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2503–2512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Rüster and G. Wolf, “Models of diabetic nephropathy,” Drug Discovery Today, vol. 7, no. 1-2, pp. 35–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Soler, M. Riera, and D. Batlle, “New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 218917, 9 pages, 2012. View at Publisher · View at Google Scholar
  14. M. D. Breyer, “Progress in progression?” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1414–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Schlöndorff, “Choosing the right mouse model for diabetic nephropathy,” Kidney International, vol. 77, no. 9, pp. 749–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Diani, G. A. Sawada, B. A. Hannah et al., “Analysis of pancreatic islet cells and hormone content in the spontaneously diabetic KK Ay mouse by morphometry, immunocytochemistry and radioimmunoassay,” Virchows Archiv, vol. 412, no. 1, pp. 53–61, 1987. View at Scopus
  17. G. Chakraborty, S. Thumpayil, D. E. Lafontant, W. Woubneh, and J. H. Toney, “Age dependence of glucose tolerance in adult KK-A y mice, a model of non-insulin dependent diabetes mellitus,” Lab Animal, vol. 38, no. 11, pp. 364–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Yamazaki, M. Tanimoto, T. Gohda et al., “Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice,” Nephron, vol. 113, no. 2, pp. e66–e76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Diani, G. A. Sawada, N. Y. Zhang et al., “The KKA(y) mouse: a model for the rapid development of glomerular capillary basement membrane thickening,” Blood Vessels, vol. 24, no. 6, pp. 297–303, 1987. View at Scopus
  20. M. Okazaki, Y. Saito, Y. Udaka et al., “Diabetic nephropathy in KK and KK-Ay mice,” Experimental Animals, vol. 51, no. 2, pp. 191–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ito, M. Tanimoto, K. Yamada et al., “Glomerular changes in the KK-Ay/Ta mouse: a possible model for human type 2 diabetic nephropathy,” Nephrology, vol. 11, no. 1, pp. 29–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Shiuchi, T. X. Cui, L. Wu et al., “ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO,” Hypertension, vol. 40, no. 3, pp. 329–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sasaki, S. Uehara, H. Ohta et al., “Losartan ameliorates progression of glomerular structural changes in diabetic KK Ay mice,” Life Sciences, vol. 75, no. 7, pp. 869–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Matsumoto, M. Tanimoto, T. Gohda et al., “Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice,” Metabolism, vol. 57, no. 5, pp. 691–697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Ohara, M. Tanimoto, T. Gohda et al., “Effect of combination therapy with angiotensin receptor blocker and 1,25-dihydroxyvitamin D3 in type 2 diabetic nephropathy in KK-A y/Ta mice,” Nephron, vol. 117, no. 4, pp. e124–e132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. L. F. Fried, W. Duckworth, J. H. Zhang et al., “Design of combination angiotensin receptor blocker and angiotensin- converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D),” Clinical Journal of the American Society of Nephrology, vol. 4, no. 2, pp. 361–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-H. Parving, B. M. Brenner, J. J. V. McMurray et al., “Aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE): rationale and study design,” Nephrology Dialysis Transplantation, vol. 24, no. 5, pp. 1663–1671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. I. Suto, S. Matsuura, K. Imamura, H. Yamanaka, and K. Sekikawa, “Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-A(y) mice,” European Journal of Endocrinology, vol. 139, no. 6, pp. 654–661, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Ninomiya, T. Inomata, and K. Ogihara, “Obstructive uropathy and hydronephrosis in male KK-Ay mice: a report of cases,” Journal of Veterinary Medical Science, vol. 61, no. 1, pp. 53–57, 1999. View at Scopus
  30. M. Nakamura and K. Yamada, “Studies on a diabetic (KK) strain of the mouse,” Diabetologia, vol. 3, no. 2, pp. 212–221, 1967. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Becker, F. Kronenberg, J. T. Kielstein et al., “Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1091–1098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Ha, E. Y. Oh, and H. B. Lee, “The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases,” Nature Reviews Nephrology, vol. 5, no. 4, pp. 203–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Chang, S. Y. Paik, L. Mao, et al., “Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion,” PLoS ONE, vol. 7, no. 4, Article ID e33942. View at Publisher · View at Google Scholar
  34. Y. Wang, S. Zhao, S. Loyd, and L. J. Groome, “Increased urinary excretion of nephrin, podocalyxin, and betaig-h3 in women with preeclampsia,” American Journal of Physiology, vol. 302, no. 9, pp. F1084–F1089, 2012. View at Publisher · View at Google Scholar
  35. V. S. Vaidya, V. Ramirez, T. Ichimura, N. A. Bobadilla, and J. V. Bonventre, “Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury,” American Journal of Physiology, vol. 290, no. 2, pp. F517–F529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. V. S. Sabbisetti, K. Ito, C. Wang, et al., “Novel assays for detection of urinary Kim-1 in mouse models of kidney injury,” Toxicological Sciences, vol. 131, no. 1, pp. 13–25, 2013. View at Publisher · View at Google Scholar
  37. P. Ronco, “Proteinuria: is it all in the foot?” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2079–2082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. V. D. D'Agati, “Podocyte injury in focal segmental glomerulosclerosis: lessons from animal models (a play in five acts),” Kidney International, vol. 73, no. 4, pp. 399–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. T. H. Lee, Z. Cao, D. M. Long et al., “Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 2139–2151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Nagata, K. Scharer, and W. Kriz, “Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture,” Kidney International, vol. 42, no. 1, pp. 136–147, 1992. View at Scopus
  41. J. M. Turner, C. Bauer, M. K. Abramowitz, M. L. Melamed, and T. H. Hostetter, “Treatment of chronic kidney disease,” Kidney International, vol. 81, pp. 351–362, 2012. View at Publisher · View at Google Scholar
  42. J. A. Chavez and S. A. Summers, “Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 252–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. N. Jensen and M. Ritskes-Hoitinga, “How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results,” Laboratory Animals, vol. 41, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. D. R. Setchell, “Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones,” American Journal of Clinical Nutrition, vol. 68, supplement 6, pp. 1333S–1346S, 1998. View at Scopus
  45. K. Sharma, S. RamachandraRao, G. Qiu et al., “Adiponectin regulates albuminuria and podocyte function in mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1645–1656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. A. Eddy and A. B. Fogo, “Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action,” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2999–3012, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. B. Goldberg, “Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3171–3182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. P. K. Ng, B. C. Tai, E. Tan et al., “Nephrinuria associates with multiple renal traits in type 2 diabetes,” Nephrology Dialysis Transplantation, vol. 26, no. 8, pp. 2508–2514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Saleh, E. I. Boesen, J. S. Pollock, V. J. Savin, and D. M. Pollock, “Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes,” Diabetologia, vol. 54, no. 4, pp. 979–988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. Group CKDW, “VA/DoD clinical practice guideline for the management of chronic kidney disease in primary care. Version 2.0,” in Veterans Health Administration (VHA) DoVAV, Department of Defense (DoD), Ed., Veterans Health Administration and Department of Defense, Washingon DC, USA, 2008.
  51. National Kidney Foundation, “K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” American Journal of Kidney Diseases, vol. 39, no. 2, supplement 1, pp. S1–S266, 2002.