About this Journal Submit a Manuscript Table of Contents
Journal of Diabetes Research
Volume 2013 (2013), Article ID 940710, 10 pages
http://dx.doi.org/10.1155/2013/940710
Review Article

Foxp3+ Regulatory T Cells in Mouse Models of Type 1 Diabetes

1Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
2Institute of Infection Immunology, TWINCORE/Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
3Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), 01307 Dresden, Germany

Received 21 December 2012; Accepted 3 February 2013

Academic Editor: Takahisa Yamada

Copyright © 2013 Cathleen Petzold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. O. McDevitt and E. R. Unanue, “Autoimmune diabetes mellitus—much progress, but many challenges,” Advances in Immunology, vol. 100, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Anderson and J. A. Bluestone, “The NOD mouse: a model of immune dysregulation,” Annual Review of Immunology, vol. 23, pp. 447–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sakaguchi, M. Ono, R. Setoguchi et al., “Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease,” Immunological Reviews, vol. 212, pp. 8–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Wing and S. Sakaguchi, “Regulatory T cells exert checks and balances on self tolerance and autoimmunity,” Nature Immunology, vol. 11, no. 1, pp. 7–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Kassiotis, A. Liston, and S. Sakaguchi, “Regulatory T cells: history and perspective,” in Regulatory T Cells, pp. 3–17, Humana Press, 2011.
  7. B. T. Fife, I. Guleria, M. G. Bupp et al., “Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2737–2747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. L. Van Belle, P. Taylor, and M. G. von Herrath, “Mouse models for type 1 diabetes,” Drug Discovery Today, vol. 6, no. 2, pp. 41–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Sarukhan, A. Lanoue, A. Franzke, N. Brousse, J. Buer, and H. Von Boehmer, “Changes in function of antigen-specific lymphocytes correlating with progression towards diabetes in a transgenic model,” The EMBO Journal, vol. 17, no. 1, pp. 71–80, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Apostolou, Z. Hao, K. Rajewsky, and H. Von Boehmer, “Effective destruction of Fas-deficient insulin-producing β cells in type 1 diabetes,” Journal of Experimental Medicine, vol. 198, no. 7, pp. 1103–1106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Morgan, R. Liblau, B. Scott et al., “CD8+ T cell-mediated spontaneous diabetes in noenatal mice,” The Journal of Immunology, vol. 157, no. 3, pp. 978–983, 1996. View at Scopus
  12. D. Lo, J. Freedman, S. Hesse, R. D. Palmiter, R. L. Brinster, and L. A. Sherman, “Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells,” European Journal of Immunology, vol. 22, no. 4, pp. 1013–1022, 1992. View at Scopus
  13. I. Apostolou and H. Von Boehmer, “The TCR-HA, INS-HA transgenic model of autoimmune diabetes: limitations and expectations,” Journal of Autoimmunity, vol. 22, no. 2, pp. 111–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Sarukhan, C. Garcia, A. Lanoue, and H. Von Boehmer, “Allelic inclusion of T cell receptor α genes poses an autoimmune hazard due to low-level expression of autospecific receptors,” Immunity, vol. 8, no. 5, pp. 563–570, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bruder, A. M. Westendorf, W. Hansen et al., “On the edge of autoimmunity: Tcell stimulation by steady-state dendritic cells prevents autoimmune diabetes,” Diabetes, vol. 54, no. 12, pp. 3395–3401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kretschmer, I. Apostolou, D. Hawiger, K. Khazaie, M. C. Nussenzweig, and H. von Boehmer, “Inducing and expanding regulatory T cell populations by foreign antigen,” Nature Immunology, vol. 6, no. 12, pp. 1219–1227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kretschmer, T. S. P. Heng, and H. von Boehmer, “De novo production of antigen-specific suppressor cells in vivo,” Nature Protocols, vol. 1, no. 2, pp. 653–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Sarukhan, O. Lechner, and H. von Boehmer, “Autoimmune insulitis and diabetes in the absence of antigen-specific contact between T cells and β-islet cells,” European Journal of Immunology, vol. 29, no. 10, pp. 3410–3416, 1999.
  19. C. Vizler, N. Bercovici, A. Heurtier et al., “Relative diabetogenic properties of islet-specific Tc1 and Tc2 cells in immunocompetent hosts,” The Journal of Immunology, vol. 165, no. 11, pp. 6314–6321, 2000. View at Scopus
  20. E. Jaeckel, H. Von Boehmer, and M. P. Manns, “Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes,” Diabetes, vol. 54, no. 2, pp. 306–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Petzold, J. Riewaldt, T. Koenig, S. Schallenberg, and K. Kretschmer, “Dendritic cell-targeted pancreatic beta-cell antigen leads to conversion of self-reactive CD4+ T cells into regulatory T cells and promotes immunotolerance in NOD mice,” The Review of Diabetic Studies, vol. 7, no. 1, pp. 47–61, 2010. View at Scopus
  22. L. Klein, K. Khazaie, and H. Von Boehmer, “In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8886–8891, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Hansen, A. M. Westendorf, S. Reinwald et al., “Chronic antigen stimulation in vivo induces a distinct population of antigen-specific Foxp3-CD25- regulatory T cells,” The Journal of Immunology, vol. 179, no. 12, pp. 8059–8068, 2007. View at Scopus
  24. J. D. Katz, B. Wang, K. Haskins, C. Benoist, and D. Mathis, “Following a diabetogenic T cell from genesis through pathogenesis,” Cell, vol. 74, no. 6, pp. 1089–1100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Haskins, M. Portas, B. Bradley, D. Wegmann, and K. Lafferty, “T-lymphocyte clone specific for pancreatic islet antigen,” Diabetes, vol. 37, no. 10, pp. 1444–1448, 1988. View at Scopus
  26. V. Judkowski, C. Pinilla, K. Schroder, L. Tucker, N. Sarvetnick, and D. B. Wilson, “Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice,” The Journal of Immunology, vol. 166, no. 2, pp. 908–917, 2001. View at Scopus
  27. B. D. Stadinski, T. Delong, N. Reisdorph et al., “Chromogranin A is an autoantigen in type 1 diabetes,” Nature Immunology, vol. 11, no. 3, pp. 225–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Feuerer, Y. Shen, D. R. Littman, C. Benoist, and D. Mathis, “How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets,” Immunity, vol. 31, no. 4, pp. 654–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Curotto De Lafaille, A. C. Lino, N. Kutchukhidze, and J. J. Lafaille, “CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion,” The Journal of Immunology, vol. 173, no. 12, pp. 7259–7268, 2004. View at Scopus
  30. D. Haribhai, W. Lin, B. Edwards et al., “A central role for induced regulatory T cells in tolerance induction in experimental colitis,” The Journal of Immunology, vol. 182, no. 6, pp. 3461–3468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Knoechel, J. Lohr, E. Kahn, J. A. Bluestone, and A. K. Abbas, “Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen,” Journal of Experimental Medicine, vol. 202, no. 10, pp. 1375–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Katz, C. Benoist, and D. Mathis, “T helper cell subsets in insulin-dependent diabetes,” Science, vol. 268, no. 5214, pp. 1185–1188, 1995. View at Scopus
  33. N. Martin-Orozco, Y. Chung, S. H. Chang, Y. H. Wang, and C. Dong, “Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells,” European Journal of Immunology, vol. 39, no. 1, pp. 216–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. L. Bettini, F. Pan, M. Bettini, et al., “Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency,” Immunity, vol. 36, no. 5, pp. 717–730, 2012.
  35. J. Darce, D. Rudra, L. Li, et al., “An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes,” Immunity, vol. 36, no. 5, pp. 731–741, 2012.
  36. K. Lahl, C. Loddenkemper, C. Drouin et al., “Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 57–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Zhou, L. T. Jeker, B. T. Fife et al., “Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1983–1991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. V. Tarbell, L. Petit, X. Zuo et al., “Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 191–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. V. Tarbell, S. Yamazaki, K. Olson, P. Toy, and R. M. Steinman, “CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes,” Journal of Experimental Medicine, vol. 199, no. 11, pp. 1467–1477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Luo, K. V. Tarbell, H. Yang et al., “Dendritic cells with TGF-β1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2821–2826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. R. Hutchings and A. Cooke, “The transfer of autoimmune diabetes in NOD mice can be inhibited or accelerated by distinct cell populations present in normal splenocytes taken from young males,” Journal of Autoimmunity, vol. 3, no. 2, pp. 175–185, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. B. J. Miller, M. C. Appel, J. J. O'Neil, and L. S. Wicker, “Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice,” The Journal of Immunology, vol. 140, no. 1, pp. 52–58, 1988. View at Scopus
  43. S. W. Christianson, L. D. Shultz, and E. H. Leiter, “Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors,” Diabetes, vol. 42, no. 1, pp. 44–55, 1993. View at Scopus
  44. J. M. Phillips, N. M. Parish, T. Raine et al., “Type 1 diabetes development requires both CD4+ and CD8+ T cells and can be reversed by non-depleting antibodies targeting both T cell populations,” Review of Diabetic Studies, vol. 6, no. 2, pp. 97–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Miyara, G. Gorochov, M. Ehrenstein, et al., “Human Foxp3+ regulatory T cells in systemic autoimmune diseases,” Autoimmunity Reviews, vol. 10, no. 12, pp. 744–755, 2011.
  46. D. Moraes-Vasconcelos, B. T. Costa-Carvalho, T. R. Torgerson, and H. D. Ochs, “Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED,” Journal of Clinical Immunology, vol. 28, no. 1, pp. S11–S19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. R. Torgerson and H. D. Ochs, “Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells,” The Journal of Allergy and Clinical Immunology, vol. 120, no. 4, pp. 744–750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. S. Wildin, S. Smyk-Pearson, and A. H. Filipovich, “Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome,” Journal of Medical Genetics, vol. 39, no. 8, pp. 537–545, 2002. View at Scopus
  49. T. A. Chatila, F. Blaeser, N. Ho et al., “JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome,” The Journal of Clinical Investigation, vol. 106, no. 12, pp. R75–R81, 2000. View at Scopus
  50. C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. R. S. Wildin, F. Ramsdell, J. Peake et al., “X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy,” Nature Genetics, vol. 27, no. 1, pp. 18–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. E. Brunkow, E. W. Jeffery, K. A. Hjerrild et al., “Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse,” Nature Genetics, vol. 27, no. 1, pp. 68–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Chen, A. E. Herman, M. Matos, D. Mathis, and C. Benoist, “Where CD4+CD25+ T reg cells impinge on autoimmune diabetes,” Journal of Experimental Medicine, vol. 202, no. 10, pp. 1387–1397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Riewaldt, S. Dueber, M. Boernert, et al., “Severe developmental B lymphopoietic defects in Foxp3-deficient mice are refractory to adoptive regulatory T cell therapy,” Frontiers in Immunology, vol. 3, article 141, 2012. View at Publisher · View at Google Scholar
  56. A. P. Kohm, J. S. McMahon, J. R. Podojil et al., “Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells,” The Journal of Immunology, vol. 176, no. 6, pp. 3301–3305, 2006. View at Scopus
  57. L. A. Stephens and S. M. Anderton, “Comment on ‘Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells’,” The Journal of Immunology, vol. 177, no. 4, article 2036, 2006. View at Scopus
  58. S. Zelenay and J. Demengeot, “Comment on ‘Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells’,” The Journal of Immunology, vol. 177, no. 4, pp. 2036–2037, 2006. View at Scopus
  59. K. Fukushima, N. Abiru, Y. Nagayama et al., “Combined insulin B:9-23 self-peptide and polyinosinic-polycytidylic acid accelerate insulitis but inhibit development of diabetes by increasing the proportion of CD4+Foxp3+ regulatory T cells in the islets in non-obese diabetic mice,” Biochemical and Biophysical Research Communications, vol. 367, no. 4, pp. 719–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. J. Mellanby, D. Thomas, J. M. Phillips, and A. Cooke, “Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells,” Immunology, vol. 121, no. 1, pp. 15–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Mariño, J. Villanueva, S. Walters, D. Liuwantara, F. Mackay, and S. T. Grey, “CD4+CD25+ T-cells control autoimmunity in the absence of B-cells,” Diabetes, vol. 58, no. 7, pp. 1568–1577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Ly, Q. S. Mi, S. Hussain, and T. L. Delovitch, “Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells,” The Journal of Immunology, vol. 177, no. 6, pp. 3695–3704, 2006. View at Scopus
  63. F. Billiard, C. Lobry, G. Darrasse-Jeze, et al., “Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice,” The Journal of Experimental Medicine, vol. 209, no. 5, pp. 1011–1028, 2012.
  64. X. Luo, K. L. Pothoven, D. McCarthy et al., “ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14527–14532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. P. Huebner, Y. Shi, M. N. Torrero, et al., “Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β,” The Journal of Immunology, vol. 188, no. 2, pp. 559–568, 2012.
  66. Q. Liu, K. Sundar, P. K. Mishra et al., “Helminth infection can reduce insulitis and type 1 diabetes through CD25- and IL-10-independent mechanisms,” Infection and Immunity, vol. 77, no. 12, pp. 5347–5358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Minamimura, W. Gao, and T. Maki, “CD4+ regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody,” The Journal of Immunology, vol. 176, no. 7, pp. 4125–4132, 2006. View at Scopus
  68. P. E. Fecci, A. E. Sweeney, P. M. Grossi et al., “Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells,” Clinical Cancer Research, vol. 12, no. 14, pp. 4294–4305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Kim, J. P. Rasmussen, and A. Y. Rudensky, “Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice,” Nature Immunology, vol. 8, no. 2, pp. 191–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Schallenberg, C. Petzold, P.-Y. Tsai, T. Sparwasser, and K. Kretschmer, “Vagaries of fluorochrome reporter gene expression in Foxp3+ regulatory T cells,” PLoS ONE, vol. 7, no. 8, Article ID e41971.
  71. A. M. Baru, C. Untucht, V. Ganesh, et al., “Optimal isolation of functional Foxp3+ induced regulatory T cells using DEREG mice,” PLoS ONE, vol. 7, no. 9, Article ID e44760, 2012.
  72. K. Lahl and T. Sparwasser, “In vivo depletion of Foxp3+ Tregs using the DEREG mouse model,” Methods in Molecular Biology, vol. 707, pp. 157–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Kim, K. Lahl, S. Hori et al., “Cutting edge: depletion of Foxp3+ cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice,” The Journal of Immunology, vol. 183, no. 12, pp. 7631–7634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. S. You, G. Slehoffer, S. Barriot, J. F. Bach, and L. Chatenoud, “Unique role of CD4+CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, supplement 2, pp. 14580–14585, 2004. View at Publisher · View at Google Scholar · View at Scopus