About this Journal Submit a Manuscript Table of Contents
Journal of Engineering
Volume 2013 (2013), Article ID 595626, 8 pages
http://dx.doi.org/10.1155/2013/595626
Research Article

Predictive Shear Strength Models for Tropical Lateritic Soils

Department of Civil Engineering, Federal University of Technology, Akure, P.M.B. 704, Ondo State, Akure, Nigeria

Received 20 October 2012; Revised 24 January 2013; Accepted 24 January 2013

Academic Editor: Guangming Xie

Copyright © 2013 Oluwapelumi O. Ojuri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Singh and B. B. K. Huat, “Origin, formation and occurrence of tropical residual soils,” in Tropical Residual Soils Engineering, B. B. K. Huat, G. See-Sew, and F. H. Ali, Eds., Taylor & Francis, London, UK, 2004.
  2. G. Baldovin, “The shear strength of lateritic soils,” in Proceedings of the Specialty Session on Engineering Properties of Lateritic Soiles of the 7th International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 129–142, Mexico City, Mexico.
  3. S. Malomo, “The compressibility characteristics of a compacted laterite soil,” Bulletin of the International Association of Engineering Geology, vol. 24, no. 1, pp. 151–154, 1981. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Malomo, “Stress-strain behaviour of some compacted laterite soils from north-east Brazil,” Bulletin of the International Association of Engineering Geology, vol. 28, no. 1, pp. 49–54, 1983. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Malomo, “Microstructural investigation on latérite soils,” Bulletin of the International Association of Engineering Geology, vol. 39, no. 1, pp. 105–109, 1989. View at Publisher · View at Google Scholar
  6. O. Ogunsanwo, “Variability in the shear strength characteristics af an amphibolite derived laterite soil,” Bulletin of the International Association of Engineering Geology, no. 32, pp. 111–115, 1985. View at Scopus
  7. M. D. Gidigasu, Laterite Soil Engineering-Pedogenesis and Engineering Principles, Elsevier, Amsterdam, The Netherlands, 1976.
  8. S. Malomo, “Stress-strain behaviour of some compacted laterite soils,” Revista Brasileira da Geologia, vol. 2, 1980.
  9. R. M. Madu, “An investigation into the geotechnical and engineering properties of some laterites of Eastern Nigeria,” Engineering Geology, vol. 11, no. 2, pp. 101–125, 1977. View at Scopus
  10. S. A. Ola, “Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils,” Quarterly Journal of Engineering Geology and Hydrogeology, vol. 11, pp. 145–160, 1978. View at Publisher · View at Google Scholar
  11. S. A. Ola, “Permeability of three compacted tropical soils,” Quarterly Journal of Engineering Geology, vol. 13, no. 2, pp. 87–95, 1980. View at Scopus
  12. S. A. Ola, “Geotechnical properties and behaviour of some Nigerian lateritic soils,” in Tropical Soils of Nigeria in Engineering Practice, S. A. Ola, Ed., pp. 61–84, A. A. Balkema, Rotterdam, The Netherlands, 1983.
  13. O. Ogunsanwo, “Basic index properties, mineralogy and microstructure of an amphibolite derived laterite soil,” Bulletin of the International Association of Engineering Geology, vol. 33, no. 1, pp. 19–25, 1986. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Ogunsanwo, “Some geotechnical properties of two laterite soils compacted at different energies,” Engineering Geology, vol. 26, no. 3, pp. 261–269, 1989. View at Scopus
  15. S. Malomo, “Penetration resistance and basic engineering properties of laterite profile soils,” in Proceedings of the 5th International Association of Engineering Geology Congress (IAEG '86), pp. 821–828, Buenos Aires, Argentina, 1986.
  16. E. A. Mesida, “The relationship between the geology and the lateritic engineering soils in the northern environs of Akure, Nigeria,” Bulletin of the International Association of Engineering Geology, vol. 35, no. 1, pp. 65–69, 1987. View at Publisher · View at Google Scholar
  17. M. Fall, J. P. Tisot, and I. K. Cisse, “Specifications for road design using statistical data, an example of laterite or gravel lateritic soils from Senegal,” Bulletin of the International Association of Engineering Geology, vol. 50, pp. 17–35, 1994. View at Scopus
  18. L. Miao, S. Liu, and Y. Lai, “Research of soil-water characteristics and shear strength features of Nanyang expansive soil,” Engineering Geology, vol. 65, no. 4, pp. 261–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Tekinsoy, C. Kayadelen, M. S. Keskin, and M. Söylemez, “An equation for predicting shear strength envelope with respect to matric suction,” Computers and Geotechnics, vol. 31, no. 7, pp. 589–593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Nam, M. Gutierrez, P. Diplas, and J. Petrie, “Determination of the shear strength of unsaturated soils using the multistage direct shear test,” Engineering Geology, vol. 122, no. 3-4, pp. 272–280, 2011. View at Publisher · View at Google Scholar
  21. A. Zhou, D. Sheng, S. W. Sloan, and A. Antonio Gens, “Interpretation of unsaturated soil behaviour in the stress—Saturation space, I: volume change and water retention behavior,” Computers and Geotechnics, vol. 43, pp. 178–187, 2012. View at Publisher · View at Google Scholar
  22. B. S. Narendra, P. V. Sivapullaiah, S. Suresh, and S. N. Omkar, “Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study,” Computers and Geotechnics, vol. 33, no. 3, pp. 196–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ajdari, G. Habibagahi, and A. Ghahramani, “Predicting effective stress parameter of unsaturated soils using neural networks,” Computers and Geotechnics, vol. 40, pp. 89–96, 2012. View at Publisher · View at Google Scholar
  24. G. R. Khanlari, M. Heidari, A. A. Momeni, and Y. Abdilor, “Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods,” Engineering Geology, vol. 131-132, pp. 11–18, 2012. View at Publisher · View at Google Scholar
  25. V. N. S. Murthy, Geotechnical Engineering: Principles and Practices of Foundation Engineering, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2009.
  26. E. S. Reddy and K. R. Sastri, Measurement of Engineering Properties of Soils, New Age International, New Delhi, India, 1st edition, 2002.
  27. “Method of test for soil for civil engineering purpose,” BS 1377, British Standard Institute, London, UK, 1990.
  28. “Code of practice for site investigations,” BS 5930, British Standard Institute, London, UK, 1999.
  29. B. M. Das, Principles of Geotechnical Engineering, Thomson Learning, Stamford, Conn, USA, 5th edition, 2001.