About this Journal Submit a Manuscript Table of Contents
Journal of Engineering
Volume 2013 (2013), Article ID 784681, 8 pages
http://dx.doi.org/10.1155/2013/784681
Research Article

Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

1Department of Mechanical Engineering, Golestan University, P.O. Box 155, Gorgan, Iran
2School of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran

Received 18 November 2012; Accepted 22 January 2013

Academic Editor: Ahmed Mezrhab

Copyright © 2013 Seiyed Mohammad Javad Hosseini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM) inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05) on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

1. Introduction

In the recent years, due to the problems of fast depletion of conventional energy sources and ever increasing demand of energy, the implementation of proper thermal energy storage is one of the most important issues in energy conversion systems. There are three methods for storing the thermal energy: sensible, latent, and thermochemical heat or cold storage. Thermal storage systems, based on the latent heat storage, have been relevant, especially in solar thermal applications. Solid-liquid phase change during heat storage and recovery processes provides considerable advantages such as high storage capacity and nearly isothermal behavior during charging and discharging processes.

Zalba et al. [1] performed a detailed review on thermal energy storage that dealt with PCM, heat transfer studies, and applications. Farid et al. [2] also presented a review on the analysis of PCM, hermetic encapsulation, and application of PCM. Ettouney et al. [3] conducted an experimental study to investigate the solidification and melting on shell and tube arrangement. In their study, the heat transfer fluid (HTF) flows in the inner tube and the wax, as a phase change material, is stored on the shell side. The results showed that the melting and solidification process is dominated by natural convection and conduction, respectively. Seeniraj et al. [4] investigated the transient behavior of high temperature PCMs stored in shell and tube heat exchanger. They observed that if an unfinned tube is used, then some quantity of PCM nearer to the exit of the tube would remain in solid state. This is because nearer to the exit, the difference between HTF temperature and PCM’s melting point would be very small. It is also reported that the presence of a few number of annular fins maintains relatively high temperature difference between HTF and melting point, and thus melting could be found everywhere in the axial direction.

Hosseini et al. [5] investigated the effect of inlet temperature of the heat transfer fluid (HTF) on melting process in a shell and tube heat exchanger numerically and experimentally. They found that the melting front appeared at different times at positions close to the HTF tube and progressing at different rates outwards towards the shell. They obtained that by increasing the inlet temperature to 80°C, the melting time is decreased to 37%.

Vyshak and Jilani [6] numerically analyzed the effect of different configurations of latent heat thermal storage (LHTS) that having the same volume and surface area of heat transfer. They presented a comparative study of the total melting time of a phase change material (PCM) packed in three containers of different geometric configurations: rectangular, cylindrical, and shell and tube. Obtained results showed that cylindrical shell containers take the least time for equal amounts of energy storage, and this geometric effect is more pronounced with an increase in the mass of the PCM.

In order to enhance the heat transfer exchange during melting, Adine and Qarnia [7] studied the effect of multiple PCMs with different melting temperatures in shell and tube heat exchanger. They used two-PCM system (LHSU2) and single-PCM system (LHSU1) during charging process and compared the thermal performances of the latent heat storage units. Their results showed that when the mass flow rate was increased, the two-PCM system was efficient only for lowest HTF inlet temperature. Therefore, multiple-PCM unit is more efficient for low values of mass flow rate and inlet temperature of HTF.

However, the low thermal conductivity in PCM limits the heat transfer rates during both charging and discharging processes in the heat storage systems. To overcome this problem, a wide range of investigations were carried out aiming to enhance the thermal conductivity of the organic PCMs or increase the heat transfer performance. Using nanofluid to increase the heat transfer shows a great opportunity in storage system. The enhanced PCM (nanofluid) is found to exhibit lengthened melt times and shortened cool-down times.

Masuda et al. [8] reported on enhanced thermal conductivity of dispersed ultrafine (nanosize) particles in liquids. Soon thereafter, Choi and Eastman [9] presented the benefit of using the nanoparticles dispersed in a base fluid for this new class of fluids with superior thermal properties. Rahimi et al. [10] numerically studied the natural convection of mixture of nanoparticles and water near its density maximum in a rectangular enclosure. They found that heat transfer rate considering a non-Boussinesq temperature-dependent density (inversion of density) undergoes a nonlinear trend with changes in nanoparticle volume fraction. Khodadadi and Hosseinizadeh [11] reported a numerical solution on improvement of thermal storage energy using nanoparticle-enhanced phase change material (NEPCM). They found that the resulting nanoparticle-enhanced phase change materials exhibit enhanced thermal conductivity in comparison to the base material. In addition, their numerical results showed reduction in the overall solidification time. Ranjbar et al. [12] investigated the influence of utilizing nanoparticle on enhancement of heat transfer in a three-dimensional cavity. They showed that the suspended nanoparticles substantially increase the heat transfer rate. Hosseinizadeh et al. [13] investigated numerically unconstrained melting of nanoparticle-enhanced phase change materials inside a spherical container. They used RT27 and copper particle as base material and nanoparticle that enhanced the thermal conductivity of base material. Their investigations showed that the nanoparticles cause an increase in thermal conductivity of NEPCM compared to conventional PCM. Khodadadi and Fan [14] utilized an analytic/integral approach to solve one-dimensional Stefan problem for a nanofluid that undergoes freezing. Their model accounts for the thermal property jumps between the liquid and solid phases and showed that the freezing time decreases as the volume fraction of the nanoparticle is raised. There are only few experimental data that are addressing the use of particles in order to enhance PCMs. Wu et al. [15] developed a new sort of nanofluid phase-change material by suspending a small amount of nanoparticles in melting paraffin. Nanoparticles of Cu, Al, and C/Cu were added to the melting paraffin to enhance the heat transfer rate of paraffin. They concluded that Cu nanoparticles have the best performance for heat transfer. Wu et al. [16] studied the potential of Al2O3–H2O nanofluids as a new phase change material for the thermal energy storage of cooling systems. The thermal response test shows that the addition of Al2O3 nanoparticles remarkably decreases the supercooling degree of water, advances the beginning freezing time and reduces the total freezing time. They showed that by adding 0.2 wt% Al2O3 nanoparticles, the total freezing time of Al2O3–H2O nanofluids can be reduced to 20.5%.

In the present study, the solidification behavior of the NEPCM and the effect of various volume fractions of nanoparticles (0, 0.03, and 0.05) on melting rate in a cylindrical shell container are numerically studied.

2. Problem Statement and Boundary Conditions

Figure 1 presents the schematic of the physical model. The storage unit consists of two concentric tubes of 1 m length. The diameters of inside and outside tubes are 22.22 mm and 85 mm, respectively, and an annulus space is filled with NEPCM in solid phase. The thermophysical properties of the PCM based on a commercially available material, RT50 (Rubitherm GmbH), and nanoparticle which are used for simulation are given in Table 1. In addition, variable density is defined as for in the liquid state. Also water is used as the HTF that flows through the inner tube and exchanges heat with NEPCM. The initial temperature of the whole system is , and on the other hand, the lateral surface of the outer tube is insulated, while the HTF is at temperature .

tab1
Table 1: Thermophysical properties of the copper nanoparticle and RT50.
784681.fig.001
Figure 1: Physical model of cylindrical shell container.

3. Mathematical Formulation

In order to simulate phase change of NEPCM in a shell and tube heat exchanger, enthalpy-porosity method [17, 18] is used. The flow is considered unsteady, laminar, incompressible, and three-dimensional. The viscous dissipation term is considered negligible, so that the viscous incompressible flow and the temperature distribution in annulus space are described by the Navier-Stokes and thermal energy equations, respectively. Considering the NEPCM as a continuous medium with thermal equilibrium between the base fluid and the solid nanoparticle, the governing equations for NEPCM are as follows.

Continuity:

Momentum:

Thermal energy:

The enthalpy of the material is computed as the sum of the sensible enthalpy,, and the latent heat, : where

The latent heat content can be written in terms of the latent heat of the material, : where may vary from zero (solid) to (liquid). Therefore, the liquid fraction, , can be defined as [19]:

The density of the nanofluid is given by

The heat capacities of the nanofluid and part of the Boussinesq term are

In above equations, is the volume fraction of the solid particles and subscripts, , and stand for base fluid, nanofluid, and solid particle, respectively. The effective dynamic viscosity of the nanofluid containing a dilute suspension of small rigid spherical particles given by Brinkman [20] is

The thermal conductivity of the stagnant (subscript 0) nanofluid is given by

The effective thermal conductivity of the nanofluid is

The thermal conductivity enhancement term due to thermal dispersion is given by

The empirically determined constant is evaluated following the work of Wakao and Kaguei [21].

Also the latent heat evaluated using [22] is

In (2), is the Darcy’s law damping terms (as source term) that are added to the momentum equation due to phase change effect on convection. It is defined as

The coefficient is a mushy zone constant. This constant is a large number, usually 104–107. In the current study, is assumed constant and is set to 106.

4. Numerical Procedure and Validation

The SIMPLE algorithm [23] within a 3D in-house developed code [10] was utilized for solving the governing equations. The QUICK differencing scheme [24] was used for solving the momentum and energy equations, whereas the PRESTO scheme [24] was adopted for the pressure correction equation. By solving the governing equations at each time step, liquid mass fraction has been updated using (7). The computational grid was built of 300,000 cells and the time step in the calculations was as small as 0.05 s. The grid size was chosen after careful examination of the independency of the obtained results for grids of 200,000, 300,000, and 400,0000. Also, the time step for integrating the temporal derivatives was set to 0.05 s, following comparison of selected quantities obtained from simulations using 0.1, 0.05, and 0.01. Figure 2 shows the effects of grid size and time step on the variation of liquid fraction versus melting time at . The convergence was checked at each time step, with the convergence criterion of 10−7 for all variables.

fig2
Figure 2: Effects of (a) grid size and (b) time step on the variation of liquid fraction with time.

In order to validate the computational modeling of melting in our finite volume CFD code, an initial run was performed and compared with experimental data of Agyenim et al. [25] for a horizontal concentric tube heat exchanger incorporating a medium temperature phase change material (PCM) Erythritol, with a melting point of 117.7°C Figure 3 shows a comparison of average temperature profile in the PCM versus time between two works. The results of present calculation are in good agreement with those of Agyenim et al. [25].

784681.fig.003
Figure 3: Comparison of average temperature profile in the PCM versus time between the present study and Agyenim et al.’s work [25].

5. Results and Discussion

The contour of liquid fraction in melting process at various times for different volume fractions is shown in Figure 4. As it can be seen, melting process begins from contact surface of NEPCM and hot tube. At the beginning of the process, the molten region increases symmetrically and uniformly around the inner tube due to the conduction mechanism.

784681.fig.004
Figure 4: Liquid fraction distribution for various volume fractions of nanoparticle in midway along the length of cylindrical shell container.

Then by advancing in time, the molten region develops due to raising of buoyancy effect; so the convection will be dominant heat transfer mechanism and molten region is no longer symmetrical.

As depicted in Figure 4, melted NEPCM adjacent to the hot tube moves upward and penetrates into solid region. The increase in molten region in the upper half of the heat exchanger is completely apparent after 60 minutes. On the other hand, due to the existence of solid NEPCM, the conduction heat transfer in lower half of the heat exchanger causes a temperature rise.

It should be mentioned that the rate of NEPCM melting increases as volume fraction increases. Figure 4 shows this phenomena clearly in and after 60 minutes.

Furthermore, progresses of melt front in midway along the length of heat exchanger are schematically shown in Figure 5. It can be observed that an increase in volume fraction of nanoparticle causes more penetration velocity of melt front.

fig5
Figure 5: The phase interface position at various moments for various volume fractions of nanoparticle.

Pure PCM needs 8825.2 seconds for completing melting while by adding of nanoparticle from to and results in melting time reduction of 9.5% and 14.6%, respectively.

Also in this study, the effect of volume fraction of nanoparticle on liquid fraction is studied. Results indicate that at a particular time of melting process ( min) by increasing the volume fraction from to and , the liquid fraction in the heat exchanger rises from 29.5% to 44.2%. Consequently, by adding the amount of nanoparticle, a higher percentage of melting can be reached within a short time.

Due to the reduction of HTF temperature along the tube, temperature gradient between the NEPCM and HTF decreases which reduces melting at the downstream of the tube. Therefore, the effect of melting region penetration along the tube on the thermal energy is an important factor. In this study, the effect of this parameter is investigated, and the results are presented in Table 2 and Figure 6, respectively.

tab2
Table 2: Comparison of penetration length at certain time with nanoparticle dispersion.
784681.fig.006
Figure 6: Contour of penetration of front melting in axial direction in  min.

In order to study penetration length (Δ), the plane is chosen at position  mm and along the axis of the tube at minutes. Also penetration length and the increasing rate of this parameter () are calculated in Table 2. The results show that with increasing the volume fraction of copper nanoparticle the penetration length of fluid increases.

6. Conclusion

In this study, the effect of nanoparticle on melting process inside shell and tube heat exchanger is numerically investigated. Results reveal that the increment of volume fraction of nanoparticle causes more penetration velocity of melt front. Also, by increasing the volume fraction of nanoparticle up to , the total melting time is reduced to 14.6% and melt front penetration is increased to 146%. The present computations demonstrated that in a short time of the melting by increasing the volume fraction to , the liquid fraction is increased to 44.2%.

Nomenclature

: Specific heat J/kg K
: Nanoparticle diameter m
: Gravitational acceleration m/s
: Sensible enthalpy J/kg
: Total enthalpy J/kg
: Thermal conductivity W/m k
: Latent heat J/kg
: Pressure Pa
: Source term
: Time s
: Temperature K
: Velocity vector m/s.
Greek Symbols
: Liquid fraction
β:Volumetric expansion coefficient 1/K
: Density kg/m
: Volume fraction of solid particles
µ: Dynamic viscosity Pa.s
η: Efficiency
: Penetration length m.
Subscripts
eff: Effective
mush: Mushy zone
: Melting
: Nanofluid
0: Stagnant
: Base fluids
: Solid
ref: Reference.

References

  1. B. Zalba, J. M. Marín, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Applied Thermal Engineering, vol. 23, no. 3, pp. 251–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Farid, A. M. Khudhair, S. Al-Hallaj, and S. A. K. Razack, “A review on phase change energy storage: materials and applications,” Energy Conversion and Management, vol. 45, no. 9-10, pp. 1597–1615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Ettouney, H. El-Dessouky, and E. Al-Kandari, “Heat transfer characteristics during melting and solidification of phase change energy storage process,” Industrial & Engineering Chemistry Research, vol. 43, no. 17, pp. 5350–5357, 2004. View at Scopus
  4. R. V. Seeniraj, R. Velraj, and N. L. Narasimhan, “Thermal analysis of a finned-tube LHTS module for a solar dynamic power system,” Heat and Mass Transfer, vol. 38, no. 4-5, pp. 409–417, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Hosseini, A. A. Ranjbar, K. Sedighi, and M. Rahimi, “A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger,” International Communications in Heat and Mass Transfer, vol. 39, no. 9, pp. 1416–1424, 2012. View at Publisher · View at Google Scholar
  6. N. R. Vyshak and G. Jilani, “Numerical analysis of latent heat thermal energy storage system,” Energy Conversion and Management, vol. 48, no. 7, pp. 2161–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Adine and H. E. Qarnia, “Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials,” Applied Mathematical Modelling, vol. 33, no. 4, pp. 2132–2144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, no. 4, pp. 227–233, 1993. View at Publisher · View at Google Scholar
  9. S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, vol. 231, pp. 99–105, November 1995. View at Scopus
  10. M. Rahimi, A. A. Ranjbar, M. J. Hosseini, and M. Abdollahzadeh, “Natural convection of nanoparticle-water mixture near its density inversion in a rectangular enclosure,” International Communications in Heat and Mass Transfer, vol. 39, no. 1, pp. 131–137, 2012. View at Publisher · View at Google Scholar
  11. J. M. Khodadadi and S. F. Hosseinizadeh, “Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage,” International Communications in Heat and Mass Transfer, vol. 34, no. 5, pp. 534–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. Ranjbar, S. Kashani, S. F. Hosseinizadeh, and M. Ghanbarpour, “Numerical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material,” Thermal Science, vol. 15, no. 1, pp. 169–181, 2011. View at Publisher · View at Google Scholar
  13. S. F. Hosseinizadeh, A. A. Rabienataj Darzi, and F. L. Tan, “Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container,” International Journal of Thermal Sciences, vol. 51, pp. 77–78, 2012. View at Publisher · View at Google Scholar
  14. J. M. Khodadadi and L. Fan, “Expedited freezing of nanoparticle-enhanced phase change materials (NEPCM) exhibited through a simple 1-D stefan problem formulation,” in ASME Heat Transfer Summer Conference (HT '09), vol. 1 of ASME Conference Proceedings, pp. 345–351, July 2009. View at Scopus
  15. S. Wu, D. Zhu, X. Zhang, and J. Huang, “Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM),” Energy and Fuels, vol. 24, no. 3, pp. 1894–1898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Wu, D. Zhu, X. Li, H. Li, and J. Lei, “Thermal energy storage behavior of Al2O3-H2O nanofluids,” Thermochimica Acta, vol. 483, no. 1-2, pp. 73–77, 2009. View at Publisher · View at Google Scholar
  17. A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal,” Numerical Heat Transfer, vol. 13, no. 3, pp. 297–318, 1988. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. X. Gong, S. Devahastin, and A. S. Mujumdar, “Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall,” Applied Thermal Engineering, vol. 19, no. 12, pp. 1237–1251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709–1719, 1987. View at Publisher · View at Google Scholar · View at Scopus
  20. H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” The Journal of Chemical Physics, vol. 20, no. 4, p. 571, 1952. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Wakao and S. Kaguei, Heat and Mass Transfer in Packed Beds, Gordon and Breach Science Publishers, New York, NY, USA, 1982.
  22. J. M. Khodadadi and Y. Zhang, “Effects of buoyancy-driven convection on melting within spherical containers,” International Journal of Heat and Mass Transfer, vol. 44, no. 8, pp. 1605–1618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, USA, 1980.
  24. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002.
  25. F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Solar Energy, vol. 83, no. 9, pp. 1509–1520, 2009. View at Publisher · View at Google Scholar · View at Scopus