About this Journal Submit a Manuscript Table of Contents
Journal of Engineering
Volume 2013 (2013), Article ID 972019, 7 pages
http://dx.doi.org/10.1155/2013/972019
Research Article

Comparative Study of the Thermal Shock Resistance of an Industrial Tableware Porcelain

Laboratory of Mechanics, Materials and Processes, Higher School of Science and Technology of Tunis, University of Tunis, 5 Avenue Taha Hussein, Montfleury 1008, Tunisia

Received 11 January 2013; Accepted 22 March 2013

Academic Editor: Zhong-Yong Yuan

Copyright © 2013 Habib Sahlaoui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Sane and R. L. Cook, “Effect of grinding and firing treatment on the crystalline and glass content and the physical properties of whiteware bodies,” Journal of the American Ceramic Society, vol. 34, pp. 145–151, 1951.
  2. W. Dienst, H. Scholz, and H. Zimmermann, “Thermal shock resistance of ceramic materials in melt immersion tests,” Journal of the European Ceramic Society, vol. 5, no. 6, pp. 365–370, 1989. View at Scopus
  3. W. Zhi, Q. Qiang, W. Zhanjun, and S. Guodong, “The thermal shock resistance of the ZrB2-SiC-ZrC ceramic,” Materials and Design, vol. 32, no. 6, pp. 3499–3503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. L. Mattyasovsky, “Mechanical strength of porcelain,” Journal of the American Ceramic Society, vol. 40, pp. 299–306, 1957.
  5. A. Palatzky and T. Werner, “Increasing the mechanical strength of porcelain bodies,” Silikon-Technik, vol. 9, pp. 68–73, 1958.
  6. D. P. Hasselman and R. M. Fulrath, “Proposed fracture theory of a dispersion strengthened glass matrix,” Journal of the American Ceramic Society, vol. 49, no. 2, pp. 68–72, 1966.
  7. G. Stathis, A. Ekonomakou, C. J. Stournaras, and C. Ftikos, “Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitaryware porcelain,” Journal of the European Ceramic Society, vol. 24, no. 8, pp. 2357–2366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Maity and B. K. Sarkar, “Development of high-strength whiteware bodies,” Journal of the European Ceramic Society, vol. 16, no. 10, pp. 1083–1088, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Mortel, “Influence of the batch composition on the reaction behaviour and properties of fast-fired (2 h) porcelain,” Science of Ceramics, vol. 9, pp. 84–91, 1977.
  10. Y. Kobayashi, O. Ohira, T. Satoh, and E. Kato, “Effect of quartz on the sintering and bending strength of the porcelain bodies in quartz-feldspar-kaolin system,” Journal of the Ceramic Society of Japan, vol. 102, no. 1, pp. 100–105, 1994. View at Scopus
  11. C. Leonelli, F. Bondioli, P. Veronesi et al., “Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach,” Journal of the European Ceramic Society, vol. 21, no. 6, pp. 785–793, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kobayashi, O. Ohira, and E. Kato, “Effect of firing temperature on bending strength of porcelains for tableware,” Journal of the American Ceramic Society, vol. 75, no. 7, pp. 1801–1806, 1992.
  13. K. Hamano and M. Hirayama, “Effect of quartz addition on mechanical strength of porcelain bodies prepared from pottery stone,” Journal of the Ceramic Society of Japan, vol. 102, no. 7, pp. 664–668, 1994. View at Scopus
  14. O. I. Ece and Z. E. Nakagawa, “Bending strength of porcelains,” Ceramics International, vol. 28, no. 2, pp. 131–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Anusavice and R. B. Lee, “Effect of firing temperature and water exposure on crack propagation in unglazed porcelain,” Journal of Dental Research, vol. 68, no. 6, pp. 1075–1081, 1989. View at Scopus
  16. A. De Noni, D. Hotza, V. C. Soler, and E. S. Vilches, “Influence of composition on mechanical behaviour of porcelain tile. Part II: mechanical properties and microscopic residual stress,” Materials Science and Engineering A, vol. 527, no. 7-8, pp. 1736–1743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. J. Anusavice, P. H. Dehoff, S. W. Twiggs, and P. C. Lockwood, “Thermal shock resistance of porcelain discs,” Journal of Dental Research, vol. 62, no. 10, pp. 1082–1085, 1983. View at Scopus
  18. S. N. White, “Mechanical fatigue of a feldspathic dental porcelain,” Dental Materials, vol. 9, no. 4, pp. 260–264, 1993. View at Scopus
  19. X. Zhang, Z. Wang, C. Hong, P. Hu, and W. Han, “Modification and validation of the thermal shock parameter for ceramic matrix composites under water quenching condition,” Materials and Design, vol. 30, no. 10, pp. 4552–4556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Sahlaoui and H. Sidhom, “Improvement of mechanical and thermal properties of glass structures by a metallic oxide addition and suitable heat treatments,” Annales de Chimie, vol. 26, no. 3, pp. 55–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Montoya, F. J. Serrano, M. M. Reventós, J. M. Amigo, and J. Alarcón, “Effect of TiO2 on the mullite formation and mechanical properties of alumina porcelain,” Journal of the European Ceramic Society, vol. 30, no. 4, pp. 839–846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. R. Boccaccini, K. Pfeiffer, and H. Kern, “Thermal shock resistant Al2TiO5-glass matrix composite,” Journal of Materials Science Letters, vol. 18, no. 23, pp. 1907–1909, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Tian, B. Sun, J. G. Heinrich, and D. Li, “Stress relief mechanism in layer-wise laser directly sintered porcelain ceramics,” Materials Science and Engineering A, vol. 527, no. 7-8, pp. 1695–1703, 2010. View at Publisher · View at Google Scholar · View at Scopus