About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2011 (2011), Article ID 697543, 10 pages
http://dx.doi.org/10.1155/2011/697543
Research Article

Time-Varying Procedures for Insulin-Dependent Diabetes Mellitus Control

1CONICET and Center of Systems and Control, Department of Mathematics, Buenos Aires Institute of Technology (ITBA), Avenida E. Madero 399, C1106ACD, Buenos Aires, Argentina
2CONICET and Department of Electrical Engineering, ITBA, Buenos Aires, Argentina
3Catalonia Institute for Energy Research (IREC), Josep Pla, B2, Pl. Baixa, 08019 Barcelona, Spain

Received 12 October 2010; Revised 28 January 2011; Accepted 26 March 2011

Academic Editor: Eldon D. Lehmann

Copyright © 2011 R. S. Sánchez Peña et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Shamoon, H. Duffy, N. Fleischer et al., “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, no. 14, pp. 977–986, 1993. View at Publisher · View at Google Scholar
  2. A. Makroglou, J. Li, and Y. Kuang, “Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview,” Applied Numerical Mathematics, vol. 56, no. 3-4, pp. 559–573, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. G. Cocha, V. Constanza, and C. D'Atellis, “Control nolineal de la diabetes mellitus Tipo I,” in Actas de la RPIC, pp. 240–245, Rosario, Argentina, 2009.
  4. J. Sorensen, A physiologic model of glucose metabolism in man and its use to design and asses improved insulin therapies for diabetes, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1985.
  5. L. Kovács, B. Benyó, Z. Benyó, and A. Kovács, “Past and present of automatic glucose-insulin control research at BME,” in Proceedings of the 10th International Symposium of Hungarian Researchers, pp. 245–252, 2009.
  6. F. Chee and T. Fernando, Closed-Loop Control of Blood Glucose, vol. 368, Springer, Berlin, Germany, 2007.
  7. J. Bondía, J. Vehí, C. Palerm, and P. Herrero, “El páncreas artificial: control automático de infusión de insulina en diabetes mellitus tipo 1,” Revista Iberoamericana de Automática e Informàtica industrial, vol. 7, no. 2, pp. 5–20, 2010.
  8. P. Dua, F. J. Doyle III, and E. N. Pistikopoulos, “Model-based blood glucose control for type 1 diabetes via parametric programming,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1478–1491, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. E. Ruiz-Velázquez, R. Femat, and D. U. Campos-Delgado, “Blood glucose control for type I diabetes mellitus: a robust tracking H problem,” Control Engineering Practice, vol. 12, no. 9, pp. 1179–1195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. S. Parker, F. J. Doyle III, J. H. Ward, and N. A. Peppas, “Robust H glucose control in diabetes using a physiological model,” AIChE Journal, vol. 46, no. 12, pp. 2537–2546, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Kovács and B. Kulcsár, “LPV modeling of type I diabetes mellitus,” in Proceedings of the 8th International Symposium of Hungarian Researchers, pp. 163–173, 2007.
  12. L. Kovács, B. Kulcsár, J. Bokor, and Z. Benyó, “Model-based nonlinear optimal blood glucose control of type I diabetes patients,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1607–1610, Vancouver, Canada, 2008.
  13. L. Kovács, B. Benyó, J. Bokor, and Z. Benyó, “Induced L2-norm minimization of glucose-insulin system for Type I diabetic patients,” Computer Methods and Programs in Biomedicine, vol. 102, no. 2, pp. 105–118, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. R. S. Sánchez Peña and A. S. Ghersin, “LPV control of glucose for Diabetes type I,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 680–683, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. 2010, http://www.childrenwithdiabetes.com/continuous.htm.
  16. A. Caduff, M. S. Talary, M. Mueller et al., “Non-invasive glucose monitoring in patients with Type 1 diabetes: a multisensor system combining sensors for dielectric and optical characterisation of skin,” Biosensors and Bioelectronics, vol. 24, no. 9, pp. 2778–2784, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Medical Engineering and Physics, vol. 30, no. 5, pp. 541–549, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. 2010, http://www.diabetesnet.com/diabetes-technology/insulin-pumps.
  19. D. Campos-Delgado and A. Gordillo-Moscoso, “Regulación de glucosa en pacientes diabéticos a través de infusiones subcutáneas: retos y perspectivas,” in Congreso Nacional de la Asociación de México de Control Automático (AMCA '04), Mexico D.F., Mexico, October 2004.
  20. P. Gahinet and P. Apkarian, “Linear matrix inequality approach to H control,” International Journal of Robust and Nonlinear Control, vol. 4, no. 4, pp. 421–448, 1994. View at Scopus
  21. G. Becker and A. Packard, “Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback,” Systems and Control Letters, vol. 23, no. 3, pp. 205–215, 1994. View at Scopus
  22. A. Packard, “Gain scheduling via LFTs,” Systems and Control Letters, vol. 22, pp. 79–92, 1993.
  23. C. W. Scherer, “LPV control and full block multipliers,” Automatica, vol. 37, no. 3, pp. 361–375, 2001. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. J. S. Shamma and M. Athans, “Gain scheduling: potential hazards and possible remedies,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 101–107, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach, Texts in Applied Mathematics, Springer, Berlin, Germany, 2000.
  26. R. S. Sánchez Peña and M. Sznaier, Robust Systems Theory and Applications, John Wiley & Sons, New York, NY, USA, 1998.
  27. K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, USA, 1996.
  28. S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15, SIAM Studies in Applied Mathematics, Philadelphia, Pa, USA, 1994.
  29. C. Scherer and S. Weiland, Linear Matrix Inequalities in Control, Dutch Institute of Systems and Control, 2005.
  30. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Mathworks, Inc., 1995.
  31. J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, no. 1, pp. 625–653, 1999. View at Scopus
  32. K. C. Toh, R. H. Tütüncü, and M. J. Todd, “SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming,” 2007, http://www.math.cmu.edu/~reha/sdpt3.html.
  33. L. Kovács, B. Kulcsár, J. Bokor, and Z. Bcnyó, “LPV fault detection of glucose-insulin system,” in Proceedings of the 14th Mediterranean Conference on Control and Automation (MED '06), Ancone, Italy, 2006. View at Publisher · View at Google Scholar
  34. M. G. Safonov, “Control using logic-based switching,” in Focusing on the Knowable: Controller Invalidation and Learning, pp. 224–233, Springer, Berlin, Germany, 1996.
  35. M. G. Safonov and T. C. Tsao, “The unfalsified control concept and learning,” IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 843–847, 1997. View at Scopus
  36. T. F. Brozenec, T. C. Tsao, and M. G. Safonov, “Controller validation,” International Journal of Adaptive Control and Signal Processing, vol. 15, no. 5, pp. 431–444, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. K. R. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Routledge, London, UK, 1963.
  38. M. Jun and M. G. Safonov, “Automatic PID tuning: an application of unfalsified control,” in Proceedings of the IEEE International Symposium on Computer Aided Control System Design, pp. 328–333, Kohala Coast, Hawaii, USA, August 1999. View at Scopus
  39. A. Ingimundarson and R. S. Sánchez Peña, “Using the unfalsified control concept to achieve fault tolerance,” in Proceedings of the 17th World Congress the International Federation of Automatic Control (IFAC '08), vol. 17, pp. 1236–1242, Seoul, Korea, July 2008. View at Publisher · View at Google Scholar
  40. T. C. Tsao and M. G. Safonov, “Unfalsified direct adaptive control of a two-link robot arm,” International Journal of Adaptive Control and Signal Processing, vol. 15, no. 3, pp. 319–334, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Ghersin and R. S. Sánchez Peña, “LPV control of a 6-DOF vehicle,” IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 883–887, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Bianchi and R. S. Sánchez Peña, “Interpolation for gain scheduled control with guarantees,” Automatica, vol. 47, pp. 239–243, 2011.
  43. F. D. Bianchi and R. S. Sánchez-Peña, “Robust identification/invalidation in an LPV framework,” International Journal of Robust and Nonlinear Control, vol. 20, no. 3, pp. 301–312, 2010. View at Publisher · View at Google Scholar · View at Scopus