About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2011 (2011), Article ID 728540, 12 pages
http://dx.doi.org/10.1155/2011/728540
Research Article

Quasi-Model-Based Control of Type 1 Diabetes Mellitus

Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, H-1117 Budapest, Magyar Tudósok krt. 2, Hungary

Received 7 July 2010; Revised 1 November 2010; Accepted 26 March 2011

Academic Editor: Eldon D. Lehmann

Copyright © 2011 András György et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes—estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004. View at Publisher · View at Google Scholar
  2. A. Fonyo and E. Ligeti, Medical Phyisology, Medicina, 2008.
  3. C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. de Nicolao, and B. Kovatchev, “Diabetes: models, signals, and control (methodological review),” IEEE Reviews in Biomedical Engineering, vol. 2, pp. 54–96, 2009.
  4. R. A. Harvey, Y. Wang, B. Grosman et al., “Quest for the artificial pancreas: combining technology with treatment,” IEEE Engineering in Medicine and Biology Magazine, vol. 29, no. 2, pp. 53–62, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. R. S. Parker, F. J. Doyle, and N. A. Peppas, “The intravenous route to blood glucose control: a review of control algorithms for noninvasive monitoring and regulation in type I diabetic patients,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 1, pp. 65–73, 2001. View at Publisher · View at Google Scholar
  6. F. Chee and T. Fernando, Closed-Loop Control of Blood Glucose, Springer, New York, NY, USA, 2007.
  7. R. N. Bergman, L. S. Phillips, and C. Cobelli, “Physiologic evaluation of factors controlling glucose tolerance in man. Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intravenous glucose,” Journal of Clinical Investigation, vol. 68, no. 6, pp. 1456–1467, 1981.
  8. J. Sorensen, A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes, Ph.D. thesis, Massachusetts Institute of Technology, 1985.
  9. R. Hovorka, V. Canonico, L. J. Chassin et al., “Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes,” Physiological Measurement, vol. 25, no. 4, pp. 905–920, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Dalla Man, R. Rizza, and C. Cobelli, “Mealsimulation model ofthe glucose-insulin system,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 10, pp. 1740–1749, 2007.
  11. W. Liu and F. Tang, “Modeling a simplified regulatory system of blood glucose at molecular levels,” Journal of Theoretical Biology, vol. 252, no. 4, pp. 608–620, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. A. Makroglou, J. Li, and Y. Kuang, “Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview,” Applied Numerical Mathematics, vol. 56, no. 3-4, pp. 559–573, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  13. L. Kovács, A. György, Z. Almassy, and Z. Benyó, “Analyzing a novel model of human blood glucose systemat molecular levels,” in Proceedings of the 10th European Control Conference, pp. 2494–2499, 2009.
  14. M. Korach-André, H. Roth, D. Barnoud, M. Péan, F. Péronnet, and X. Leverve, “Glucose appearance in the peripheral circulation and liver glucose output in men after a large 13 C starch meal,” American Journal of Clinical Nutrition, vol. 80, no. 4, pp. 881–886, 2004.
  15. C. Dalla Man, M. Camilleri, and C. Cobelli, “A system model of oral glucose absorption: validation on gold standard data,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 12, article 10, pp. 2472–2478, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. T. F. Lotz, J. G. Chase, K. A. McAuley et al., “Monte Carlo analysis of a new model-based method for insulin sensitivity testing,” Computer Methods and Programs in Biomedicine, vol. 89, no. 3, pp. 215–225, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. K. Zhou, Robust and Optimal Control, Prentice Hall, New Jersey, NJ, USA, 1996.
  18. B. Lantos, Theory and Design of Control Systems I-II, Akadémia, Budapest, Hungray, 2005.
  19. L. Kovács and B. Paláncz, “Glucose-insulin control of type 1 diabetic patients in H2/H space via computer algebra,” in Proceedings of the 2nd International Conference on Algebraic Biology (AB '07), vol. 4545 of Lecture Notes in Computer Science, pp. 95–109, July 2007.
  20. A. Gyorgy, Quasi model based optimal control of type 1 diabetes mellitus, M.S. thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2010.
  21. R. S. Parker, F. J. Doyle, J. H. Ward, and N. A. Peppas, “Robust H glucose control in diabetes using a physiological model,” AIChE Journal, vol. 46, no. 12, pp. 2537–2546, 2000. View at Publisher · View at Google Scholar
  22. L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao, B. Kovatchev, and C. Cobelli, “Model predictive control of glucose concentration in type I diabetic patients: an in silico trial,” Biomedical Signal Processing and Control, vol. 4, no. 4, pp. 338–346, 2009. View at Publisher · View at Google Scholar
  23. V. K. Piotrovskii, “The use of Weibull distribution to describe the in vivo absorption kinetics,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 15, no. 6, pp. 681–686, 1987.