About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2011 (2011), Article ID 953064, 12 pages
http://dx.doi.org/10.1155/2011/953064
Research Article

Regression Methods for Ophthalmic Glucose Sensing Using Metamaterials

1Institute for System Dynamics, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
24th Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Received 31 May 2011; Accepted 5 August 2011

Academic Editor: David Hamilton

Copyright © 2011 Philipp Rapp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Diabetes. Fact Sheet N 312, WHO, Geneva, Switzerland, 2010, http://www.who.int/mediacentre/factsheets/fs312/en/.
  2. Y. C. Shen, A. Davies, E. Linfield, T. Elsey, P. Taday, and D. Arnone, “The use of fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Physics in Medicine and Biology, vol. 48, no. 13, pp. 2023–2032, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zhang, W. Hodge, C. Hutnick, and X. Wang, “Noninvasive diagnostic devices for diabetes through measuring tear glucose,” Journal of Diabetes Science and Technology, vol. 5, no. 1, pp. 166–172, 2011.
  4. J. Wang, “In vivo glucose monitoring: towards 'Sense and Act' feedback-loop individualized medical systems,” Talanta, vol. 75, no. 3, pp. 636–641, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” Journal of Biomedical Optics, vol. 15, no. 3, pp. 037012–037018, 2010.
  6. C. O'Donnell, N. Efron, and A. J. M. Boulton, “A prospective study of contact lens wear in diabetes mellitus,” Ophthalmic and Physiological Optics, vol. 21, no. 3, pp. 127–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. W. March, B. Long, W. Hofmann, D. Keys, and C. McKenney, “Safety of contact lenses in patients with diabetes,” Diabetes Technology and Therapeutics, vol. 6, no. 1, pp. 49–52, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. V. L. Alexeev, S. Das, D. N. Finegold, and S. A. Asher, “Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid,” Clinical Chemistry, vol. 50, no. 12, pp. 2353–2360, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Badugu, J. R. Lakowicz, and C. D. Geddes, “Wavelength-ratiometric probes for the selective detection of fluoride based on the 6-aminoquinolinium nucleus and boronic acid moiety,” Journal of Fluorescence, vol. 14, no. 6, pp. 693–703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. R. G. A. Ballerstadt, C. Evans, R. McNichols, and A. Gowda, “Concanavalin a for in vivo glucose sensing: a biotoxicity review,” Biosensors and Bioelectronics, vol. 22, no. 2, pp. 275–284, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on MTT, vol. 47, no. 11, pp. 2075–2084, 1999. View at Scopus
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. N. Liu, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Materials, vol. 8, no. 9, pp. 758–762, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Letters, vol. 10, no. 7, pp. 2721–2726, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano, vol. 5, no. 3, pp. 2042–2050, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. B. Lukyanchuk, N. I. Zheludev, S. A. Maier et al., “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials, vol. 9, no. 9, pp. 707–715, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. Y.-J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir, vol. 20, no. 8, pp. 3096–3106, 2004. View at Scopus
  19. N. Liu, T. Weiss, M. Mesch et al., “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Letters, vol. 10, no. 4, pp. 1103–1107, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Realization of three-dimensional photonic metamaterials at optical frequencies,” Nature Materials, vol. 7, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. G. Raschke, S. Kowarik, T. Franzl et al., “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters, vol. 3, no. 7, pp. 935–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Letters, vol. 6, no. 9, pp. 2060–2065, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Physical Review B, vol. 60, no. 4, pp. 2610–2618, 1999. View at Scopus
  24. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Physical Review B, vol. 66, no. 4, Article ID 045102, pp. 451021–4510217, 2002. View at Scopus
  25. T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Optics Express, vol. 17, no. 10, pp. 8051–8061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, UK, 2002.
  27. L. Wang, Support Vector Machines: Theory and Applications, Springer, New York, NY, USA, 2005.
  28. C. D. Motchenbacher and J. A. Connelly, Low-Noise Electronic System Design, John Wiley & Sons, New York, NY, USA, 1993.
  29. U. Tietze and C. Schenk, Halbleiterschaltungstechnik, Springer, New York, NY, USA, 2002.
  30. F. N. Hooge, “1/f noise sources,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 1926–1935, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care, vol. 10, no. 5, pp. 622–628, 1987. View at Scopus
  32. S. A. Asher, V. L. Alexeev, A. V. Goponenko et al., “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” Journal of the American Chemical Society, vol. 125, no. 11, pp. 3322–3329, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus