About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2012 (2012), Article ID 162106, 16 pages
http://dx.doi.org/10.1155/2012/162106
Research Article

Hyperspectral Anomaly Detection: Comparative Evaluation in Scenes with Diverse Complexity

1Department CISS, Royal Military Academy, 2007 Brussels, Belgium
2Land and Air Systems Division, Norwegian Defence Research Establishment (FFI), 2007 Kjeller, Norway
3Theoretical and Applied Optics Department, French Aerospace Laboratory (ONERA), FR-31055 Toulouse Cedex 4, France
4Department of Mathematics, Royal Military Academy, Brussels, Belgium

Received 24 May 2012; Revised 22 August 2012; Accepted 9 September 2012

Academic Editor: Xiaofei Hu

Copyright © 2012 Dirk Borghys et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly detection in hyperspectral images,” IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 5–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 10, pp. 1760–1770, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. C. I. Chang and S. S. Chiang, “Anomaly detection and classification for hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 6, pp. 1314–1325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 2, pp. 388–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Schaum, “Advanced methods of multivariate anomaly detection,” in Proceedings of the IEEE Aerospace Conference, pp. 1–7, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Schaum, “Hyperspectral anomaly detection beyond RX,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral Imagery XII, vol. 6565, 2007.
  8. E. Lo and L. T. C. John Ingram, “Hyperspectral anomaly detection based on minimum generalized variance method,” in Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, vol. 6966, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C.E. Caefer, J. Silverman, O. Orthal, D. Antonelli, Y. Sharoni, and S.R. Rotman, “Improved covariance matrices for point target detection in hyperspectral data,” Optical Engineering, vol. 47, no. 7, Article ID 076402, 2008. View at Publisher · View at Google Scholar
  10. E. Lo and A. Schaum, “A hyperspectral anomaly detector based on partialling out a clutter subspace,” in Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, vol. 7334, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Lo, “Maximized subspace model for hyperspectral anomaly detection,” Pattern Analysis and Applications, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Lo, “Variable subspace model for hyperspectral anomaly detection,” Pattern Analysis and Applications, pp. 1–13, 2011. View at Publisher · View at Google Scholar
  13. I. Kåsen, P. E. Goa, and T. Skauli, “Target detection in hyperspectral images based on multi-component statistical models for representation of background clutter,” in Proceedings of the SPIE on Electro-Optical and Infrared Systems: Technology and Applications, vol. 5612, pp. 258–264, October 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Blumberg, E. Ohel, and S. Rotman, “Anomaly detection in noisy multi- and hyperspectral images of urban environments,” in Proceedings of the 3rd GRSS/ISPRS Symposium, Tempe, Ariz, USA, March 2005.
  15. C. Willis, “Anomaly detection in hyperspectral imagery using statistical mixture models,” in Proceedings of the 2nd EMRS DTC Technical Conference, Edinburgh, UK, 2005.
  16. O. Duran and M. Petrou, “A time-efficient method for anomaly detection in hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 12, pp. 3894–3904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Duran and M. Petrou, “Spectral unmixing with negative and superunity abundances for subpixel anomaly detection,” IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 1, pp. 152–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Veracini, S. Matteoli, M. Diani, and G. Corsini, “Fully unsupervised learning of Gaussian mixtures for anomaly detection in hyperspectral imagery,” in Proceedings of the 9th International Conference on Intelligent Systems Design and Applications (ISDA '09), pp. 596–601, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Borghys, E. Truyen, M. Shimoni, and C. Perneel, “Anomaly detection in hyperspectral images of complex scenes,” in Proceedings of the 29th Symposium of the European Association of Remote Sensing Laboratories, Chania, Greece, June 2009.
  20. Y. Tarabalka, T. V. Haavardsholm, I. Kåsen, and T. Skauli, “Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing,” Journal of Real-Time Image Processing, vol. 4, no. 3, pp. 287–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Borghys, I. Kasen, V. Achard, and C. Perneel, “Comparative evaluation of hyperspectral anomaly detectors in different types of background,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390, Baltimore, April 2012.
  22. C. I. Chang, “Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 502–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Masson and W. Pieczynski, “SEM algorithm and unsupervised statistical segmentation of satellite images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 3, pp. 618–633, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Li and J. M. Bioucas-Dias, “Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. III250–III253, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Shen and E. M. Bassett, “Information theory based band selection and utility evaluation for reflective spectral systems,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, vol. 4725, pp. 18–29, April 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Kåsen, A. Rødningsby, T. V. Haavardsholm, and T. Skauli, “Band selection for hyperspectral target detection based on a multinormal mixture anomaly detection algorithm,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, vol. 6966, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Peña, F. J. Prieto, and J. Viladomat, “Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure,” Journal of Multivariate Analysis, vol. 101, no. 9, pp. 1995–2007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Ashton, B. D. Wemett, R. A. Leathers, and T. V. Downes, “A novel method for illumination suppression in hyperspectral images,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, vol. 6966, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Richter and A. Müller, “De-shadowing of satellite/airborne imagery,” International Journal of Remote Sensing, vol. 26, no. 15, pp. 3137–3148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Adler-Golden, M. W. Matthew, G. P. Anderson, G. W. Felde, and J. A. Gardner, “An algorithm for de-shadowing spectral imagery,” in Proceedings of the 11th JPL Airborne Earth Science Workshop, pp. 3–4, March 2002.
  31. M. Shimoni, G. Tolt, C. Perneel, and J. Ahlberg, “Detection of vehicles in shadow areas using combined hyperspectral and lidar data,” in Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), pp. 4427–4430, Vancouver, Canada, July 2011.
  32. B. D. Wemett, J. K. Riek, and R. A. Leathers, “Dynamic thresholding for hyperspectral shadow detection using Levenberg-Marquardt minimization on multiple gaussian illumination distributions,” in Proceedings of the SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, vol. 7334, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Skauli, “Sensor noise informed representation of hyperspectral data, with benefits for image storage and processing,” Optics Express, vol. 19, no. 14, pp. 13031–13046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. McCullagh and J. Nelder, Generalized Linear Models, chapter 6, CRC Press, 1999.
  35. J. Harsanyi, W. Farrand, and C. Chang, “Determining the number and identity of spectral endmembers: an integrated approach using neyman pearson eigenthresholding and iterative constrained rms error minimization,” in Proceedings of the 9th Thematic Conference on Geologic Remote Sensing, February 1993.
  36. C. I. Chang and Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 608–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Bioucas-Diaz and M. Nascimiento, “Hyperspectral subspace identification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 8, pp. 2435–2445, 2008.
  38. N. Acito, M. Diani, and G. Corsini, “A new algorithm for robust estimation of the signal subspace in hyperspectral images in the presence of rare signal components,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, pp. 3844–3856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Acito, “Hyperspectral signal subspace identification in the presence of rare signal components,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 4, pp. 1940–1954, 2010.
  40. B. Manly, Ed., Multivariate Statistical Methods, Chapman and Hall, Boca Raton, Fla, USA, 1995.
  41. O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional covariance matrices,” Journal of Multivariate Analysis, vol. 88, no. 2, pp. 365–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Matteoli, M. Diani, and G. Corsini, “Different approaches for improved covariance matrix estimation in hyperspectral anomaly detection,” in Proceedings of the Annual Meeting of the Italian National Telecommunications and Information Theory Group (GTTI '09), 2009.
  43. J. Theiler and B. R. Foy, “Effect of signal contamination in matched-filter detection of the signal on a cluttered background,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 1, pp. 98–102, 2006. View at Publisher · View at Google Scholar · View at Scopus