About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2012 (2012), Article ID 762927, 14 pages
http://dx.doi.org/10.1155/2012/762927
Research Article

An Adaptive Amplifier System for Wireless Sensor Network Applications

1Mechatronics Research Group, Facultad Regional Villa María, Universidad Tecnológica Nacional, Avenida Universidad 450, 5900 Villa María, Argentina
2Electronics and Instrumentation Development Group, Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende S/N, 5000 Córdoba, Argentina

Received 22 December 2011; Revised 13 February 2012; Accepted 27 February 2012

Academic Editor: Jose Silva-Martinez

Copyright © 2012 Mónica Lovay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Chen, S. Kher, and A. Somani, “Distributed fault detection of wireless sensor networks,” in Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks (DIWANS '06), pp. 65–72, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Flammini, P. Ferrari, D. Marioli, E. Sisinni, and A. Taroni, “Wired and wireless sensor networks for industrial applications,” Microelectronics Journal, vol. 40, no. 9, pp. 1322–1336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Zhang, Z. Zilic, and K. Radecka, “Energy efficient software-based self-test for wireless sensor network nodes,” in Proceedings of the 24th IEEE VLSI Test Symposium, pp. 186–191, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Krstic, L. Chen, W. C. Lai, K. T. Cheng, and S. Dey, “Embedded software-based self-test for programmable core-based designs,” IEEE Design and Test of Computers, vol. 19, no. 4, pp. 18–27, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Microprocessor software-based self-testing,” IEEE Design and Test of Computers, vol. 27, no. 3, Article ID 5396292, pp. 4–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Goldberg, Genetic Algorithm. Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989.
  7. R. S. Zebulum, M. Pacheco, and M. Vellasco, Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms, CRC Press, New York, NY, USA, 2002.
  8. Q. Ji, Y. Wang, M. Xie, and J. Cui, “Research on fault-tolerance of analog circuits based on evolvable hardware,” in Proceedings of the 7th International Conference on Evolvable Systems: From Biology to Hardware (ICES '07), pp. 100–108.
  9. P. C. Haddow, M. Hartmann, and A. Djupdal, “Addressing the metric challenge: evolved versus traditional fault tolerant circuits,” in Proceedings of the 2nd NASA/ESA Conference on Adaptive Hardware and Systems (AHS '07), pp. 431–438, gbr, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Hereford, “Fault-tolerant sensor systems using evolvable hardware,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 3, pp. 846–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Cypress Semiconductor Corporation, PSoC Programmable System-on-Chip Technical Reference Manual, Cypress Semiconductor Corporation, Boca Raton, Fla, USA, 2008.
  12. D. Seguine, “Just add sensor. Integrating analog and digital signal conditioning in a programmable system on chip,” in Proceedings of the 1st IEEE International Conference on Sensors, IEEE Sensors 2002, pp. 665–668, June 2002. View at Scopus
  13. Cypress Semiconductor Corporation, Programmable Gain Amplifier Data Sheet, Cypress Semiconductor Corporation, Boca Raton, Fla, USA, 2009.
  14. M. Lovay, A. Arregui, J. Gonella, G. Peretti, E. Romero, and M. Lubaszewski, “Fault tolerant amplifier system using evolvable hardware,” in Proceedings of the 4th Argentine School of Micro-Nanoelectronics, Technology and Applications and 1st Uruguay School of Micro-Nanoelectronics, Technology and Applications (EAMTA '10), pp. 50–55, October 2010. View at Scopus
  15. L. Bissi, P. Placidi, and A. Scorzoni, “Offset voltage evaluation of analog blocks in a configurable mixed architecture for smart capacitive sensor applications,” Sensors and Actuators A, vol. 140, no. 2, pp. 162–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Mattoli, A. Mondini, K. Razeeb, et al., “Development of a programmable sensor interface for wireless network nodes,” in Proceedings of the IEE International Workshop on Intelligent Environments, pp. 1–6, 2005.
  17. Y. Chin, F. Chu, S. Huang, and H. Yang, “Based on PSoC electric angle meter,” in Proceedings of the 2011 1st International Conference on Robot, Vision and Signal Processing (RVSP '11), pp. 256–259, Kaohsiung, Taiwan, 2011. View at Publisher · View at Google Scholar
  18. M. Hrgeti, I. Krois, and M. Cifrek, “Accuracy analysis of dissolved oxygen measurement system realized with cypress PSoC configurable mixed signal array,” in Proceedings of the IEEE International Symposium on Industrial Electronics 2005 (ISIE '05), pp. 1105–1110, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Doboli, P. Kane, and D. Van Ess, “Dynamic reconfiguration in a PSoC device,” in Proceedings of the International Conference on Field-Programmable Technology (FPT '09), pp. 361–363, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Mihajlovic, Z. Zilic, and K. Radecka, “Infrastructure for testing nodes of a wireless sensor network,” in Handbook of Research on Developments and Trends in Wireless Sensor Networks: From Principle to Practice, IGI Global, Hershey, Pa, USA, 2010.
  21. K. Virk and J. Madsen, “Functional testing of wireless sensor node designs,” in Proceedings of the 4th International Conference on Innovations in Information Technology (IIT '07), pp. 123–127, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies, Springer, New York, NY, USA, 2003.
  23. J. Branke, K. Deb, and K. Miettinen, Multiobjective Optimization: Interactive and Evolutionary Approaches, Springer, New York, NY, USA, 2008.
  24. C. Reeves and J. Rowe, Genetic Algorithms: Principles and Perspective. A Guide to GA Theory, Kluwer Academic, Boston, Mass, USA, 2002.
  25. F. Centurelli, P. Monsurro, and A. Trifiletti, “Power-constrained bandwidth optimization in cascaded open-loop amplifiers,” in Proceedings of the 18th European Conference on Circuit Theory and Design (ECCTD '07), pp. 651–654, Seville, Spain, 2007. View at Publisher · View at Google Scholar
  26. A. Laknaur and H. Wang, “A methodology to perform online self-testing for field-programmable analog array circuits,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 5, pp. 1751–1760, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. R. Balen, A. Q. Andrade, F. Azaïs, M. Lubaszewski, and M. Renovell, “Applying the oscillation test strategy to FPAA's configurable analog blocks,” Journal of Electronic Testing, vol. 21, no. 2, pp. 135–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. R. Balen, J. V. Calvano, M. S. Lubaszewski, and M. Renovell, “Built-in self-test of field programmable analog arrays based on transient response analysis,” Journal of Electronic Testing, vol. 23, no. 6, pp. 497–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Pereira, J. Andrade, T. Balen, M. Lubaszewski, F. Azais, and M. Renovell, “Testing the interconnect networks and I/O resources of field programmable analog arrays,” in Proceedings of the 23rd IEEE VLSI Test Symposium, pp. 389–394, 2005.
  30. K. Price, R. Storn, and L. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, New York, NY, USA, 2005.