About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2012 (2012), Article ID 902862, 13 pages
http://dx.doi.org/10.1155/2012/902862
Research Article

Mobile Base Station and Clustering to Maximize Network Lifetime in Wireless Sensor Networks

College of Engineering and Computer Science, Australian National University, Canberra, ACT 0200, Australia

Received 4 May 2012; Revised 25 September 2012; Accepted 9 October 2012

Academic Editor: Chi Ko

Copyright © 2012 Oday Jerew et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, “Energy efficient schemes for wireless sensor networks with multiple mobile base stations,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '03), pp. 377–381, December 2003. View at Scopus
  2. D. K. Goldenberg, J. Lin, A. S. Morse, B. E. Rosen, and Y. R. Yang, “Towards mobility as a network control primitive,” in Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MoBiHoc '04), 2004.
  3. J. Luo and J. P. Hubaux, “Joint mobility and routing for lifetime elongation in wireless sensor networks,” in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '05), pp. 1735–1746, March 2005. View at Scopus
  4. G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous design algorithms for wireless sensor networks with a mobile base station,” in Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '08), 2008.
  5. A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava, “Mobile element scheduling with dynamic deadlines,” IEEE Transactions on Mobile Computing, vol. 6, no. 4, pp. 395–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Sun, S. X. Gao, R. Chi, and F. Huang, “Algorithms for balancing energy consumption in wireless sensor networks,” in Proceedings of the 1st ACM International Workshop on Foundations of Wireless Ad Hoc and Sensor Networking and Computing (FOWANC '08), pp. 53–60, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor networks:a hybrid, energy-efficient approach,” in Proceedings of IEEE Conference on Computer Communications (INFOCOM '04), 2004.
  8. O. Jerew and W. Liang, “Prolonging network lifetime through the use of mobile base station in wireless sensor networks,” in Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia (MoMM '09), pp. 170–178, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Somasundara, A. Kansal, D. D. Jea, D. Estrin, and M. B. Srivastava, “Controllably mobile infrastructure for low energy embedded networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 8, pp. 958–972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data delivery in sparse mobile Ad Hoc Networks,” in Proceedings of the5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MoBiHoc '04), pp. 187–198, May 2004. View at Scopus
  11. W. Zhao, M. Ammar, and E. Zegura, “Controlling the mobility of multiple data transport ferries in a delay-tolerant network,” in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '05), pp. 1407–1418, March 2005. View at Scopus
  12. M. M. B. Tariq, M. Ammar, and E. Zegura, “Message ferry route design for sparse ad hoc networks with mobile nodes,” in Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '06), pp. 37–48, May 2006. View at Scopus
  13. M. Ma and Y. Yang, “Data gathering in wireless sensor networks with mobile collectors,” in Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS '08), April 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Estrin, “Intelligent fluid infrastructure for embedded networks,” Proceedings of the 2nd International Conference on Mobile Systems, Applications and Services (MobiSys '04), pp. 111–124, 2004. View at Scopus
  15. D. Jea, A. Somasundara, and M. Srivastava, “Multiple controlled mobile elements (data mules) for data collection in sensor networks,” in Proceedings of 1st IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS '05), pp. 244–257, July 2005. View at Scopus
  16. S. Gao, H. Zhang, T. Song, and Y. Wang, “Network lifetime and throughput maximization in wireless sensor networks with a path-constrained mobile sink,” in Proceedings of the International Conference on Communications and Mobile Computing (CMC '10), pp. 298–302, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ma and Y. Yang, “SenCar: an energy-efficient data gathering mechanism for large-scale multihop sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 10, pp. 1476–1488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Marta and M. Cardei, “Improved sensor network lifetime with multiple mobile sinks,” Pervasive and Mobile Computing, vol. 5, no. 5, pp. 542–555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Y. Poe, M. Beck, and J. B. Schmitt, “Achieving high lifetime and low delay in very large sensors networks using mobile sinks,” in Proceedings of IEEE International Conference on Distributed Computing in Sensor Systems, 2012.
  20. S. Gao and H. Zhang, “Energy efficient path-constrained sink navigation in delay-guaranteed wireless sensor networks,” Journal of Networks, vol. 5, no. 6, pp. 658–665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Sugihara and R. K. Gupta, “Optimizing energy-latency trade-off in sensor networks with controlled mobility,” in Proceedings of IEEE 28th Conference on Computer Communications (INFOCOM '09), pp. 2566–2570, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Shi and Y. T. Hou, “Some fundamental results on base station movement problem for wireless sensor networks,” IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 1054–1067, 2012.
  23. W. Liu, K. Lu, J. Wang, G. Xing, and L. Huang, “Performance analysis of wireless sensor networks with mobile sinks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 6, pp. 2777–2788, 2012.
  24. L. Kleinrock and J. Silvester, “Optimum transmission radii for packet radio networks or why six is a magic number,” in Proceedings of IEEE National Telecommunications Conference, 1978.
  25. O. Jerew, Mobility in wireless sensor networks: advantages, limitations and effects [Ph.D. thesis], School of Engineering and Computer Science, The Australian National University, 2011.