About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2013 (2013), Article ID 129589, 8 pages
http://dx.doi.org/10.1155/2013/129589
Research Article

FPGA Implementation of Gaussian Mixture Model Algorithm for 47 fps Segmentation of 1080p Video

Department of Biomedical, Electronic and Telecommunications Engineering, University of Napoli Federico II, 80125 Napoli, Italy

Received 31 October 2012; Accepted 7 January 2013

Academic Editor: Ashkan Ashrafi

Copyright © 2013 Mariangela Genovese et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Haritaoglu, D. Harwood, and L. S. Davis, “A fast background scene modeling and maintenance for outdoor surveillance,” in Proceedings of the 15th International Conference on Pattern Recognition, no. 4, pp. 179–183, Barcelona, Spain, 2000.
  2. P. KaewTrakulPong and R. Bowden, “A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes,” Image and Vision Computing, vol. 21, no. 10, pp. 913–929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Gloyer, H. K. Aghajan, K. Y. S. Siu, and T. Kailath, “Video-based freeway-monitoring system using recursive vehicle tracking,” in Image and Video Processing III, vol. 2421 of Proceedings of SPIE, pp. 173–180, San Jose, Calif, USA, February 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Jiemnez and J. Salas, “Temporal templates for detecting the trajectories of moving vehicles,” in Advanced Concepts for Intelligent Vision Systems, vol. 5807 of Lecture Notes in Computer Science, pp. 485–493, 2009.
  5. C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An improved moving object detection algorithm based on frame difference and edge detection,” in 4th International Conference on Image and Graphics, ICIG 2007, pp. 519–523, Chengdu, China, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ren and H. Sun, “A practical method for moving target detection under complex background,” Computer Engineering, vol. 31, no. 20, pp. 33–40, 2005. View at Scopus
  7. B. Xiao, C. Lu, H. Chen, Y. Yu, and R. Chen, “Moving object detection and recognition based on the frame difference algorithm and moment invariant features,” in Proceedings of the 27th Chinese Control Conference (CCC '08), pp. 578–581, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Chien, S. Y. Ma, and L. G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Ridder, O. Munkelt, and H. Kirchner, “Adaptive background estimation and foreground detection using Kalman filtering,” in Proceedings of the 10th International Congress for Applied Mineralogy (ICAM '95), pp. 193–199, 1995.
  10. K. P. Karmann and A. Brandt, “Moving object recognition using an adaptive background memory,” in Time-Varying Image Processing and Moving Object Recognition, V. Capellini, Ed., pp. 289–307, Elsevier, 2nd edition, 1990.
  11. K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice of background maintenance,” in Proceedings of the 1999 7th IEEE International Conference on Computer Vision (ICCV '99), pp. 255–261, September 1999. View at Scopus
  12. J. C. S. Jacques, C. R. Jung, and S. R. Musse, “Background subtraction and shadow detection in grayscale video sequences,” in Proceedings of the 18th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI '05), pp. 189–196, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. Chiu, M. Y. Ku, and L. W. Liang, “A robust object segmentation system using a probability-based background extraction algorithm,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 4, pp. 518–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780–785, 1997. View at Scopus
  15. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '99), pp. 246–252, Fort Collins, Colo, USA, June 1999. View at Scopus
  16. OpenCV library on source forge, http://sourceforge.net/projects/opencvlibrary/.
  17. H. Jiang, H. Ardo, and V. Öwall, “Hardware accelerator design for video segmentation with multi-modal background modelling,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), vol. 2, pp. 1142–1145, 2005. View at Publisher · View at Google Scholar
  18. F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall, “An embedded real-time surveillance system: implementation and evaluation,” Journal of Signal Processing Systems, vol. 52, no. 1, pp. 75–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Jiang, H. Ardö, and V. Öwall, “A hardware architecture for real-time video segmentation utilizing memory reduction techniques,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 226–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Genovese, E. Napoli, and N. Petra, “OpenCV compatible real time processor for background foreground identification,” in Proceedings of the International Conference on Microelectronics (ICM '10), pp. 467–470, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Genovese and E. Napoli, “FPGA-based architecture for real time segmentation and denoising of HD video,” Journal of Real-Time Image Processing, 2011. View at Publisher · View at Google Scholar
  22. M. Genovese and E. Napoli, “FPGA implementation of OpenCV compatible background identification circuit,” in Proceedings of the 3rd International Symposium on Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications (CompIMAGE '12), pp. 75–80, Rome, Italy, September 2012.
  23. A. G. M. Strollo, N. Petra, and D. De Caro, “Dual-tree error compensation for high performance fixed-width multipliers,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 8, pp. 501–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo, “Truncated binary multipliers with variable correction and minimum mean square error,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 6, pp. 1312–1325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo, “Designof fixed-width multipliers with linear compensation function,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 5, pp. 947–960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Garofalo, N. Petra, and E. Napoli, “Analytical calculation of the maximum error for a family of truncated multipliers providing minimum mean square error,” IEEE Transactions on Computers, vol. 60, no. 9, pp. 1366–1371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. De Caro, E. Napoli, and A. G. M. Strollo, “Direct digital frequency synthesizers using high-order polynomial approximation,” in Proceedings of the IEEE International Solid-State Circuits Conference, vol. 1, pp. 134–135, San Francisco, Calif, USA, February 2002. View at Scopus
  28. D. De Caro, E. Napoli, and A. G. M. Strollo, “Direct digital frequency synthesizers with polynomial hyperfolding technique,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 7, pp. 337–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. De Caro and A. G. M. Strollo, “High-performance direct digital frequency synthesizers in 0.25 μm CMOS using dual-slope approximation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2220–2227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. G. M. Strollo, D. De Caro, and N. Petra, “Elementary functions hardware implementation using constrained piecewise-polynomial approximations,” IEEE Transactions on Computers, vol. 60, no. 3, pp. 418–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. De Caro, N. Petra, and A. G. M. Strollo, “High-performance special function unit for programmable 3-D graphics processors,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 9, pp. 1968–1978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture model for real-time tracking with shadow detection,” in Proceedings of the 2nd European Workshop Advanced Video Based Surveillance Systems, 2001.
  33. V. Garofalo, N. Petra, D. De Caro, A. G. M. Strollo, and E. Napoli, “Low error truncated multipliers for DSP applications,” in Proceedings of the 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS '08), pp. 29–32, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. Kidambi and P. El-Guibaly, “Area-efficient multipliers for digital signal processing applications,” IEEE Transactions on Circuits and Systems II, vol. 43, no. 2, pp. 90–95, 1996. View at Scopus
  35. V. Garofalo, “Fixed-width multipliers for the implementation of efficient digital FIR filters,” Microelectronics Journal, vol. 39, no. 12, pp. 1491–1498, 2008. View at Publisher · View at Google Scholar · View at Scopus