About this Journal Submit a Manuscript Table of Contents
Journal of Electrical and Computer Engineering
Volume 2013 (2013), Article ID 908906, 2 pages
http://dx.doi.org/10.1155/2013/908906
Editorial

Algorithms for Multispectral and Hyperspectral Image Analysis

1Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA
2Department of Mathematics, Wake Forest University, Winston-Salem, NC 27106, USA
3Space Data Systems Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
4Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA

Received 28 November 2012; Accepted 28 November 2012

Copyright © 2013 Heesung Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Keshava and N. J. F. Mustard, “Spectral unmixing,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Somers, G. P. Asner, L. Tits, and P. Coppin, “Endmember variability in Spectral Mixture Analysis: a review,” Remote Sensing of Environment, vol. 115, no. 7, pp. 1603–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Bioucas-Dias, A. Plaza, N. Dobigeon et al., “Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379, 2012.
  4. G. Camps-Valls, L. Gomez-Chova, J. Muñoz-Marí, J. Vila-Francés, and J. Calpe-Maravilla, “Composite kernels for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 1, pp. 93–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly detection in hyperspectral images,” IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 5–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. G. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 29–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Landgrebe, Theory Methods in Multispectral Remote Sensing, John Wiley & Sons, Hoboken, NJ, USA, 2003.
  9. M. Eismann, Hyperspectral Remote Sensing, vol. PM 210, SPIE Press Monograph, 2012.
  10. D. Snyder, J. Kerekes, I. Fairweather, R. Crabtree, J. Shive, and S. Hager, “Development of a web-based application to evaluate target finding algorithms,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '08), vol. 2, pp. II915–II918, July 2008. View at Publisher · View at Google Scholar · View at Scopus