About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2012 (2012), Article ID 312836, 10 pages
http://dx.doi.org/10.1155/2012/312836
Research Article

A Water-Damaged Home and Health of Occupants: A Case Study

1Citrus Heights, CA, USA
2Progressive Healthcare Group, Benson, AZ 85602, USA
3Neurotest, Inc., Pasadena, CA 91107, USA
4USC Keck School of Medicine, Los Angeles, CA 90089, USA
5Center for ENT and Facial Plastic Surgery, Atlanta, GA 30327, USA
6Compliance Solution, Honolulu, HI 96823, USA

Received 16 July 2011; Accepted 4 September 2011

Academic Editor: Janette Hope

Copyright © 2012 Jack Dwayne Thrasher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Fisk, E. A. Eliseeva, and M. J. Mendel, “Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis,” Environmental Health, vol. 9, no. 72, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. M. J. Mendell, A. G. Mirer, K. Cheung, M. Tong, and J. Douwes, “Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence,” Environmental Health Perspectives, vol. 119, no. 6, pp. 748–756, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. D. Mudarri and W. J. Fisk, “Public health and economic impact of dampness and mold,” Indoor Air, vol. 17, no. 3, pp. 226–235, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. H. Park and J. M. Cox-Ganser, “Mold exposure and respiratory health in damp indoor environments,” Frontiers in Bioscience E, vol. 3, pp. 575–571, 2011.
  5. D. P. Dennis, “Chronic sinusitis: defective T-cells responding to superantigen treated by reduction of fungi in the nose and air,” Archives of Environmental Health, vol. 58, no. 7, pp. 433–441, 2004. View at Scopus
  6. D. Dennis, D. Robertson, L. Curtis, and J. Black, “Fungal exposure endocrinopathy in sinusitis with growth hormone deficiency: Dennis-Robertson syndrome,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 669–680, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. Empting, “Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 577–582, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. K. H. Kilburn, “Role of molds and mycotoxins in being sick in buildings: neurobehavioral and pulmonary impairment,” Advances in Applied Microbiology, vol. 55, pp. 339–359, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. H. Kilburn, “Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 681–692, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. H. Kilburn, J. D. Thrasher, and N. B. Immers, “Do terbutaline- and mold-associated impairments of the brain and lung relate to autism?” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 703–710, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. W. J. Rea, N. Didriksen, T. R. Simon, Y. Pan, E. J. Fenyves, and B. Griffiths, “Effects of toxic exposure to molds and mycotoxins in building-related illnesses,” Archives of Environmental Health, vol. 58, no. 7, pp. 399–405, 2004. View at Scopus
  12. W. J. Rea, Y. Pan, and B. Griffiths, “The treatment of patients with mycotoxin-induced disease,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 711–714, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. E. Bloom, E. Nyman, A. Must, C. Pehrson, and L. Larsson, “Molds and mycotoxins in indoor environments–a survey in water-damaged buildings,” Journal of Occupational and Environmental Hygiene, vol. 6, no. 11, pp. 671–678, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. D. Thrasher and S. Crawley, “The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 583–615, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Täubel, M. Sulyok, V. Vishwanath et al., “Co-occurrence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments,” Indoor Air, vol. 21, no. 5, pp. 368–375, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. V. Polizzi, B. Delmulle, A. Adams et al., “JEM spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings,” Journal of Environmental Monitoring, vol. 11, no. 10, pp. 1849–1858, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. WHO, Dampness and Mould: WHO Guidelines for Indoor Air Quality, Euro Non Serial Publications, 2009.
  18. A. Ciegler, R. F. Vesonder, and R. J. Cole, “Tremorgenic mycotoxins,” in Mycotoxins and Other Fungal Related Food Problems, J. V. Rodricks, Ed., Advances in Chemistry Series no. 149, pp. 163–177, American Chemical Society, 1976.
  19. N. Kyriakidis, E. S. Waight, J. B. Day, and P. G. Mantle, “Novel metabolites from Penicillium crustosum, including penitrem E, a tremorgenic mycotoxin,” Applied and Environmental Microbiology, vol. 42, no. 1, pp. 61–62, 1981. View at Scopus
  20. W. E. Braselton and P. C. Rumler, “MS/MS screen for the tremorgenic mycotoxins roquefortine and penitrem a,” Journal of Veterinary Diagnostic Investigation, vol. 85, no. 4, pp. 515–518, 1996. View at Scopus
  21. K. Khoufache, O. Puel, N. Loiseau et al., “Verruculogen associated with Aspergillus fumigatus hyphae and conidia modifies the electrophysiological properties of human nasal epithelial cells,” BMC Microbiology, vol. 7, article 11, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. I. Kosalec, M. Š. Klarić, and S. Pepeljnjak, “Verruculogen production in airborne and clinical isolates of Aspergillus fumigatus Fres,” Acta Pharmaceutica, vol. 55, no. 4, pp. 357–364, 2005.
  23. C. S. Coffey, R. E. Sonnenburg, C. T. Melroy, M. G. Dubin, and B. A. Senior, “Endoscopically guided aerobic cultures in postsurgical patients with chronic rhinosinusitis,” American Journal of Rhinology, vol. 20, no. 1, pp. 72–76, 2006. View at Scopus
  24. A. Chakrabarti, D. W. Denning, B. J. Ferguson et al., “Fungal rhinosinusitis: a categorization and definitional schema addressing current controversies,” Laryngoscope, vol. 119, no. 9, pp. 1809–1818, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. K. Mantovani, A. A. Bisanha, R. C. Demarco, E. Tamashiro, R. Martinez, and W. T. Anselmo-Lima, “Maxillary sinuses microbiology from patients with chronic rhinosinusitis,” Brazilian Journal of Otorhinolaryngology, vol. 76, no. 5, pp. 548–551, 2010. View at Publisher · View at Google Scholar
  26. J. Barkman, Home Inspection Report, Kihei, Hawaii, USA, 2009.
  27. Engineering Dynamics Corp, “Dizy Residence Report,” Maui, Hawaii, USA.
  28. Pugliese and Thrasher, “Multiple testing parameters of water damaged buildings,” The Canadian Journal of Environmental Education. In press.
  29. H. Feltman, G. Schubert, S. Khan, M. Jain, et al., “Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa,” Journal of Microbiology, vol. 147, pp. 2659–2669, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. E. Griffith, T. Aksamit, B. A. Brown-Elliott et al., “An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 4, pp. 367–416, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Kapadia, K. V. I. Rolston, and X. Y. Han, “Invasive Streptomyces infections: six cases and literature review,” American Journal of Clinical Pathology, vol. 127, no. 4, pp. 619–624, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Copeland, H. S. Warren, S. F. Lowery, et al., “Acute respiratory response to endotoxin in mice and humans,” Clinical and Diagnostic Laboratory Immunology, vol. 12, pp. 60–57, 2005.
  33. F. D. Martinez, “CD14, endotoxin, and asthma risk: actions and interactions,” Proceedings of the American Thoracic Society, vol. 4, no. 3, pp. 221–225, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. R. Rylander, “Endotoxin and occupational airway disease,” Current Opinion in Allergy and Clinical Immunology, vol. 6, no. 1, pp. 62–68, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. Thorn and R. Rylander, “Inflammatory response after inhalation of bacterial endotoxin assessed by the induced sputum technique,” Thorax, vol. 53, no. 12, pp. 1047–1052, 1998. View at Scopus
  36. M. A. Andersson, R. Mikkola, R. M. Kroppenstedt et al., “The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin,” Applied and Environmental Microbiology, vol. 64, no. 12, pp. 46–67, 1998. View at Scopus
  37. Z. Islam, C. J. Amuzie, J. R. Harkema, and J. J. Pestka, “Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: kinetics and potentiation by bacterial lipopolysaccharide coexposure,” Toxicological Sciences, vol. 98, no. 2, pp. 526–541, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. A. Roy-Burman, R. H. Savel, S. Racine et al., “Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections,” Journal of Infectious Diseases, vol. 183, no. 12, pp. 1767–1774, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. K. Huttunen, J. Pelkonen, K. F. Nielsen, U. Nuutinen, J. Jussila, and M. R. Hirvonen, “Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum,” Environmental Health Perspectives, vol. 112, no. 6, pp. 659–665, 2004. View at Scopus
  40. D. G. Hooper, V. E. Bolton, F. T. Guilford, and D. C. Straus, “Mycotoxin detection in human samples from patients exposed to environmental molds,” International Journal of Molecular Sciences, vol. 10, no. 4, pp. 1465–1475, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. L. Brasel, D. R. Douglas, S. C. Wilson, and D. C. Straus, “Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia,” Applied and Environmental Microbiology, vol. 71, no. 1, pp. 114–122, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. T. L. Brasel, A. W. Campbell, R. E. Demers et al., “Detection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments,” Archives of Environmental Health, vol. 59, no. 6, pp. 317–323, 2004. View at Scopus
  43. D. C. Straus, “The possible role of fungal contamination in sick building syndrome,” Frontiers in Bioscience E, vol. 3, pp. 562–580, 2011.
  44. T. Reponen, S. C. Seo, F. Grimsley, T. Lee, C. Crawford, and S. A. Grinshpun, “Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio,” Atmospheric Environment, vol. 41, no. 37, pp. 8140–8149, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. H. Cho, S. C. Seo, D. Schmechel, S. A. Grinshpun, and T. Reponen, “Aerodynamic characteristics and respiratory deposition of fungal fragments,” Atmospheric Environment, vol. 39, no. 30, pp. 5454–5465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. R. L. Górny, “Filamentous microorganisms and their fragments in indoor air—a review,” Annals of Agricultural and Environmental Medicine, vol. 11, no. 2, pp. 185–197, 2004.
  47. J. H. Hope and B. E. Hope, “Ochratoxin-A from inhalation exposure associated with focal segmental glomerulosclerosis: two human cases,” The Canadian Journal of Environmental Education. In Press.
  48. D. Hibi, Y. Susuki, Y. Ishi, et al., “Site-specific in vivo mutagenicity in the kidney of bpt deta rats given a carcinogenic dose of Ochratoxin A.,” Toxicological Sciences, vol. 122, pp. 406–414, 2011.
  49. N. Palma, S. Cinelli, O. Sapora, S. H. Wilson, and E. Dogliotti, “Ochratoxin A-induced mutagenesis in mamalian cells is consistent with the production of oxidative stress,” Chemical Research in Toxicology, vol. 20, pp. 1031–1037, 2007.
  50. W. Karmus, P. Dimitrov, V. Simeonov, S. Tsolova, and V. Batuman, “Offspring of parents with Balkan Endemic Nephropathy have igher C-reactive protein levels suggestive of inflammatory processes: a longitudinal study,” BMC Nephrology, vol. 10, article 10, 2009.