About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2012 (2012), Article ID 481641, 5 pages
http://dx.doi.org/10.1155/2012/481641
Research Article

Urinary Bisphenol A and Hypertension in a Multiethnic Sample of US Adults

Department of Community Medicine, West Virginia University School of Medicine, P.O. Box 9190, Morgantown, WV 26506-9190, USA

Received 28 June 2011; Accepted 2 December 2011

Academic Editor: Michael Bates

Copyright © 2012 Anoop Shankar and Srinivas Teppala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. N. Vandenberg, M. V. Maffini, C. Sonnenschein, B. S. Rubin, and A. M. Soto, “Bisphenol-a and the great divide: a review of controversies in the field of endocrine disruption,” Endocrine Reviews, vol. 30, no. 1, pp. 75–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Calafat, Z. Kuklenyik, J. A. Reidy, S. P. Caudill, J. Ekong, and L. L. Needham, “Urinary concentrations of bisphenol A and 4-Nonylphenol in a human reference population,” Environmental Health Perspectives, vol. 113, no. 4, pp. 391–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Calafat, X. Ye, L. Y. Wong, J. A. Reidy, and L. L. Needham, “Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004,” Environmental Health Perspectives, vol. 116, no. 1, pp. 39–44, 2008. View at Scopus
  4. K. Moriyama, T. Tagami, T. Akamizu et al., “Thyroid hormone action is disrupted by bisphenol A as an antagonist,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 11, pp. 5185–5190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. S. Rubin and A. M. Soto, “Bisphenol A: perinatal exposure and body weight,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 55–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Newbold, E. Padilla-Banks, and W. N. Jefferson, “Environmental estrogens and obesity,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 84–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Shankar and S. Teppala, “Relationship between urinary bisphenol A levels and diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. 3822–3826, 2011. View at Publisher · View at Google Scholar
  8. I. A. Lang, T. S. Galloway, A. Scarlett et al., “Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults,” Journal of the American Medical Association, vol. 300, no. 11, pp. 1303–1310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Melzer, N. E. Rice, C. Lewis, W. E. Henley, and T. S. Galloway, “Association of urinary bisphenol A concentration with heart disease: evidence from NHANES 2003–06,” PLoS ONE, vol. 5, no. 1, Article ID e8673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Miyawaki, K. Sakayama, H. Kato, H. Yamamoto, and H. Masuno, “Perinatal and postnatal exposure to bisphenol A increase adipose tissue mass and serum cholesterol level in mice,” Journal of Atherosclerosis and Thrombosis, vol. 14, no. 5, pp. 245–252, 2007. View at Scopus
  11. Y. J. Yang, Y. C. Hong, S. Y. Oh et al., “Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women,” Environmental Research, vol. 109, no. 6, pp. 797–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. H. P. Streeten, G. H. Anderson Jr, T. Howland, R. Chiang, and H. Smulyan, “Effects of thyroid function on blood pressure. Recognition of hypothyroid hypertension,” Hypertension, vol. 11, no. 1, pp. 78–83, 1988. View at Scopus
  14. Juhaeri, J. Stevens, L. E. Chambless et al., “Associations between weight gain and incident hypertension in a bi-ethnic cohort: the atherosclerosis risk in communities study,” International Journal of Obesity, vol. 26, no. 1, pp. 58–64, 2002. View at Publisher · View at Google Scholar
  15. J. R. Sowers, “Insulin resistance and hypertension,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 5, pp. H1597–H1602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. Laaksonen, L. Niskanen, K. Nyyssönen, T. A. Lakka, J. A. Laukkanen, and J. T. Salonen, “Dyslipidaemia as a predictor of hypertension in middle-aged men,” European Heart Journal, vol. 29, no. 20, pp. 2561–2568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Rodrigo, H. Prat, W. Passalacqua, J. Araya, C. Guichard, and J. P. Bächler, “Relationship between oxidative stress and essential hypertension,” Hypertension Research, vol. 30, no. 12, pp. 1159–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. G. Lakoski, D. M. Herrington, D. M. Siscovick, and S. B. Hulley, “C-reactive protein concentration and incident hypertension in young adults: the CARDIA study,” Archives of Internal Medicine, vol. 166, no. 3, pp. 345–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. National Center for Health Statistics, “2003-2004 National Health and Nutrition Examination Survey: survey operations manual,” 2010, http://www.cdc.gov/nchs/nhanes/nhanes2003-2004/current_nhanes_03_04.htm.
  20. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 34, supplement 1, pp. S62–S69, 2011.
  21. X. Ye, Z. Kuklenyik, L. L. Needham, and A. M. Calafat, “Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine,” Analytical Chemistry, vol. 77, no. 16, pp. 5407–5413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. National Center for Health Statistics, “2003-2004 National Health and Nutrition Examination Survey: Laboratory procedures,” 2010, http://www.cdc.gov/nchs/nhanes/nhanes2003-2004/LEXAB_C.htm.
  23. P. Phrakonkham, S. Viengchareun, C. Belloir, M. Lombes, Y. Artur, and M. C. Canivenc-Lavier, “Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 110, no. 1-2, pp. 95–103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Masuno, J. Iwanami, T. Kidani, K. Sakayama, and K. Honda, “Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway,” Toxicological Sciences, vol. 84, no. 2, pp. 319–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Matsushima, T. Teramoto, H. Okada et al., “ERRγ tethers strongly bisphenol A and 4-α-cumylphenol in an induced-fit manner,” Biochemical and Biophysical Research Communications, vol. 373, no. 3, pp. 408–413, 2008. View at Publisher · View at Google Scholar
  26. H. M. Wright, C. B. Clish, T. Mikami et al., “A synthetic antagonist for the peroxisome proliferator-activated receptor γ inhibits adipocyte differentiation,” Journal of Biological Chemistry, vol. 275, no. 3, pp. 1873–1877, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. B. Ropero, P. Alonso-Magdalena, E. García-García, C. Ripoll, E. Fuentes, and A. Nadal, “Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis,” International Journal of Andrology, vol. 31, no. 2, pp. 194–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Alonso-Magdalena, S. Morimoto, C. Ripoll, E. Fuentes, and A. Nadal, “The estrogenic effect of bisphenol a disrupts pancreatic β-cell function in vivo and induces insulin resistance,” Environmental Health Perspectives, vol. 114, no. 1, pp. 106–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Hennig, B. D. Hammock, R. Slim, M. Toborek, V. Saraswathi, and L. W. Robertson, “PCB-induced oxidative stress in endothelial cells: modulation by nutrients,” International Journal of Hygiene and Environmental Health, vol. 205, no. 1-2, pp. 95–102, 2002. View at Scopus
  30. J. J. Stegeman, M. E. Hahn, R. Weisbrod et al., “Induction of cytochrome P4501A1 by aryl hydrocarbon receptor agonists in porcine aorta endothelial cells in culture and cytochrome P4501A1 activity in intact cells,” Molecular Pharmacology, vol. 47, no. 2, pp. 296–306, 1995. View at Scopus
  31. H. Ooe, T. Taira, S. M. M. Iguchi-Ariga, and H. Ariga, “Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1,” Toxicological Sciences, vol. 88, no. 1, pp. 114–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. R. Lovati, M. Galbussera, G. Franceschini et al., “Increased plasma and aortic triglycerides in rabbits after acute administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Toxicology and Applied Pharmacology, vol. 75, no. 1, pp. 91–97, 1984.
  33. A. Shankar and J. Li, “Association between serum γ-glutamyltransferase level and prehypertension among US adults,” Circulation Journal, vol. 71, no. 10, pp. 1567–1572, 2007. View at Publisher · View at Google Scholar · View at Scopus