About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2012 (2012), Article ID 713696, 52 pages
http://dx.doi.org/10.1155/2012/713696
Review Article

Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium

Received 1 March 2012; Revised 10 May 2012; Accepted 10 May 2012

Academic Editor: David O. Carpenter

Copyright © 2012 Sam De Coster and Nicolas van Larebeke. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Curado, B. Edwards, H. R. Shin et al., Cancer Incidence in Five Continents, vol. 9, IARC Scientific Publication, Lyon, France, 2007.
  2. R. Boulogne, E. Jougla, et al., “Mortality differences between the foreign-born and locally-born population in France (2004–2007),” vol. 74, no. 8, pp. 1213–1223, 2012.
  3. K. Nasseri and L. H. Moulton, “Patterns of death in the first and second generation immigrants from selected Middle Eastern countries in California,” Journal of Immigrant and Minority Health/Center for Minority Public Health, vol. 13, no. 2, pp. 361–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Stirbu, A. E. Kunst, F. A. Vlems et al., “Cancer mortality rates among first and second generation migrants in the Netherlands: convergence toward the rates of the native Dutch population,” International Journal of Cancer, vol. 119, no. 11, pp. 2665–2672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Yavari, T. G. Hislop, C. Bajdik et al., “Comparison of cancer incidence in Iran and Iranian immigrants to British Columbia, Canada,” Asian Pacific Journal of Cancer Prevention, vol. 7, no. 1, pp. 86–90, 2006. View at Scopus
  6. E. M. John, A. I. Phipps, A. Davis, and J. Koo, “Migration history, acculturation, and breast cancer risk in Hispanic women,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2905–2913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Maskarinec and J. J. Noh, “The effect of migration on cancer incidence among Japanese in Hawaii,” Ethnicity and Disease, vol. 14, no. 3, pp. 431–439, 2004. View at Scopus
  8. R. Fernandez, C. Miranda, and B. Everett, “Prevalence of obesity among migrant Asian Indians: a systematic review and meta-analysis,” International Journal of Evidence-Based Healthcare, vol. 9, no. 4, pp. 420–428, 2011. View at Publisher · View at Google Scholar
  9. S. Ebrahim, S. Kinra, L. Bowen et al., “The effect of rural-to-urban migration on obesity and diabetes in india: a cross-sectional study,” PLoS Medicine, vol. 7, no. 4, Article ID e1000268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Cancer Research UK, 2011, http://info.cancerresearchuk.org/cancerstats/.
  11. F. Bray, J. Lortet-Tieulent, J. Ferlay, D. Forman, and A. Auvinen, “Prostate cancer incidence and mortality trends in 37 European countries: an overview,” European Journal of Cancer, vol. 46, no. 17, pp. 3040–3052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Althuis, J. M. Dozier, W. F. Anderson, S. S. Devesa, and L. A. Brinton, “Global trends in breast cancer incidence and mortality 1973–1997,” International Journal of Epidemiology, vol. 34, no. 2, pp. 405–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Huyghe, T. Matsuda, and P. Thonneau, “Increasing incidence of testicular cancer worldwide: a review,” Journal of Urology, vol. 170, no. 1, pp. 5–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. M. Otten, M. J. M. Broeders, J. Fracheboud, S. J. Otto, H. J. De Koning, and A. L. M. Verbeek, “Impressive time-related influence of the Dutch screening programme on breast cancer incidence and mortality, 1975–2006,” International Journal of Cancer, vol. 123, no. 8, pp. 1929–1934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Ward, M. J. Thun, L. M. Hannan, and A. Jemal, “Interpreting cancer trends,” Annals of the New York Academy of Sciences, vol. 1076, pp. 29–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. CDC, 2008, http://www.cdc.gov/diabetes/statistics/prevalence_national.htm.
  17. CDC, 2008, http://www.cdc.gov/nchs/data/hestat/overweight/overweight_adult.htm.
  18. E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. E. Duncan, S. M. Li, and X. H. Zhou, “Prevalence and trends of a metabolic syndrome phenotype among U.S. adolescents, 1999–2000,” Diabetes Care, vol. 27, no. 10, pp. 2438–2443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yu, Q. Zhou, Y. Hang, X. Bu, and W. Jia, “Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells,” Cancer, vol. 109, no. 11, pp. 2374–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Le Guevel and F. Pakdel, “Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods,” Human Reproduction, vol. 16, no. 5, pp. 1030–1036, 2001. View at Scopus
  22. G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson et al., “Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β,” Endocrinology, vol. 139, no. 10, pp. 4252–4263, 1998. View at Scopus
  23. K. Ikeda, Y. Arao, H. Otsuka et al., “Terpenoids found in the Umbelliferae family act as agonists/antagonists for ERα and ERβ: differential transcription activity between ferutinine-liganded ERα and ERβ,” Biochemical and Biophysical Research Communications, vol. 291, no. 2, pp. 354–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Beck, U. Rohr, and A. Jungbauer, “Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy?” Journal of Steroid Biochemistry and Molecular Biology, vol. 94, no. 5, pp. 499–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Viglietti-Panzica, E. Mura, and G. Panzica, “Effects of early embryonic exposure to genistein on male copulatory behavior and vasotocin system of Japanese quail,” Hormones and Behavior, vol. 51, no. 3, pp. 355–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Hu, H. Liu, et al., “Endocrine effects of methoxylated brominated diphenyl ethers in three in vitro models,” Marine Pollution Bulletin, vol. 62, no. 11, pp. 2356–2361, 2011. View at Publisher · View at Google Scholar
  27. S. L. Schneider, V. Alks, and C. E. Morreal, “Estrogen properties of 3,9 dihydroxybenz[a]anthracene, a potential metabolite of benz[a]anthracene,” Journal of the National Cancer Institute, vol. 57, no. 6, pp. 1351–1354, 1976. View at Scopus
  28. M. Abdelrahim, E. Ariazi, K. Kim et al., “3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor α,” Cancer Research, vol. 66, no. 4, pp. 2459–2467, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Chaloupka, V. Krishnan, and S. Safe, “Polynuclear aromatic hydrocarbon carcinogens as antiestrogens m MCF-7 human breast cancer cells: role of the Ah receptor,” Carcinogenesis, vol. 13, no. 12, pp. 2233–2239, 1992. View at Scopus
  30. R. White, S. Jobling, S. A. Hoare, J. P. Sumpter, and M. G. Parker, “Environmentally persistent alkylphenolic compounds are estrogenic,” Endocrinology, vol. 135, no. 1, pp. 175–182, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Mnif, J. M. Pascussi, A. Pillon et al., “Estrogens and antiestrogens activate hPXR,” Toxicology Letters, vol. 170, no. 1, pp. 19–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Pillon, A. M. Boussioux, A. Escande et al., “Binding of estrogenic compounds to recombinant estrogen receptor-α: application to environmental analysis,” Environmental Health Perspectives, vol. 113, no. 3, pp. 278–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Pasqualini, A. Sarrieau, M. Dussaillant et al., “Estrogen-like effects of 7,12-dimethylbenz(a)anthracene on the female rat hypothalamo-pituitary axis,” Journal of Steroid Biochemistry, vol. 36, no. 5, pp. 485–491, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Harris, E. J. Routledge, C. Schaffner, J. V. Brian, W. Giger, and J. P. Sumpter, “Benzotriazole is antiestrogenic in vitro but not in vivo,” Environmental Toxicology and Chemistry, vol. 26, no. 11, pp. 2367–2372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Jobling, T. Reynolds, R. White, M. G. Parker, and J. P. Sumpter, “A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic,” Environmental Health Perspectives, vol. 103, no. 6, pp. 582–587, 1995. View at Scopus
  36. F. S. Vom Saal, B. T. Akingbemi, S. M. Belcher et al., “Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure,” Reproductive Toxicology, vol. 24, no. 2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. S. Vom Saal, S. C. Nagel, et al., “The estrogenic endocrine disrupting chemical bisphenol A, (BPA) and obesity,” Molecular and Cellular Endocrinology, vol. 354, no. 1-2, pp. 74–84, 2012. View at Publisher · View at Google Scholar
  38. S. M. Oh, H. R. Kim, and K. H. Chung, “In vitro estrogenic and antiestrogenic potential of chlorostyrenes,” Toxicology in Vitro, vol. 23, no. 7, pp. 1242–1248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Yamasaki, M. Takeyoshi, M. Sawaki, N. Imatanaka, K. Shinoda, and M. Takatsuki, “Immature rat uterotrophic assay of 18 chemicals and Hershberger assay of 30 chemicals,” Toxicology, vol. 183, no. 1–3, pp. 93–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. G. Preuss, H. Gurer-Orhan, J. Meerman, and H. T. Ratte, “Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay,” Toxicology in Vitro, vol. 24, no. 1, pp. 129–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Lai, M. Lu, et al., “Glucuronidation of hydroxylated polybrominated diphenyl ethers and their modulation of estrogen UDP-glucuronosyltransferases,” Chemosphere, vol. 86, no. 7, pp. 727–734, 2012. View at Publisher · View at Google Scholar
  42. H. Liu, W. Hu, H. Sun et al., “In vitro profiling of endocrine disrupting potency of 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) and related hydroxylated analogs (HO-PBDEs),” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 287–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. I. A. T. M. Meerts, R. J. Letcher, S. Hoving et al., “In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds,” Environmental Health Perspectives, vol. 109, no. 4, pp. 399–407, 2001. View at Scopus
  44. T. Hamers, J. H. Kamstra, E. Sonneveld et al., “In vitro profiling of the endocrine-disrupting potency of brominated flame retardants,” Toxicological Sciences, vol. 92, no. 1, pp. 157–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Crews, J. M. Bergeron, and J. A. McLachlan, “The role of estrogen in turtle sex determination and the effect of PCBs,” Environmental Health Perspectives, vol. 103, no. 7, pp. 73–77, 1995. View at Scopus
  46. L. J. Fischer, R. F. Seegal, P. E. Ganey, I. N. Pessah, and P. R. S. Kodavanti, “Symposium overview: toxicity of non-coplanar PCBs,” Toxicological Sciences, vol. 41, no. 1, pp. 49–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Winneke, J. Walkowiak, and H. Lilienthal, “PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction,” Toxicology, vol. 181-182, pp. 161–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Buckman, N. Veldhoen, et al., “PCB-associated changes in mRNA expression in killer whales (Orcinus orca) from the NE Pacific Ocean,” Environmental Science & Technology, vol. 45, no. 23, pp. 10194–10202, 2011.
  49. S. Takeuchi, F. Shiraishi, et al., “Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans,” Toxicology, vol. 289, no. 2-3, pp. 112–121, 2011. View at Publisher · View at Google Scholar
  50. R. Recio-Vega, V. Velazco-Rodriguez, G. Ocampo-Gómez, S. Hernandez-Gonzalez, P. Ruiz-Flores, and F. Lopez-Marquez, “Serum levels of polychlorinated biphenyls in Mexican women and breast cancer risk,” Journal of Applied Toxicology, vol. 31, no. 3, pp. 270–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Svobodová, M. Plačková, V. Novotná, and T. Cajthaml, “Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays,” Science of the Total Environment, vol. 407, no. 22, pp. 5921–5925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Oh, B. T. Ryu, S. K. Lee, and K. H. Chung, “Antiestrogenic potentials of ortho-PCB congeners by single or complex exposure,” Archives of Pharmacal Research, vol. 30, no. 2, pp. 199–209, 2007. View at Scopus
  53. B. C. Sanchez, B. Carter, H. R. Hammers, and M. S. Sepúlveda, “Transcriptional response of hepatic largemouth bass (Micropterus salmoides) mRNA upon exposure to environmental contaminants,” Journal of Applied Toxicology, vol. 31, no. 2, pp. 108–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. E. C. Bonefeld-Jorgensen, H. R. Andersen, T. H. Rasmussen, and A. M. Vinggaard, “Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity,” Toxicology, vol. 158, no. 3, pp. 141–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Y. Kunz and K. Fent, “Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish,” Aquatic Toxicology, vol. 79, no. 4, pp. 305–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Gomez, A. Pillon, H. Fenet et al., “Estrogenic activity of cosmetic components in reporter cell lines: Parabens, UV screens, and musks,” Journal of Toxicology and Environmental Health A, vol. 68, no. 4, pp. 239–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Suzuki, S. Kitamura, R. Khota, K. Sugihara, N. Fujimoto, and S. Ohta, “Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens,” Toxicology and Applied Pharmacology, vol. 203, no. 1, pp. 9–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Zucchi, N. Blüthgen, A. Ieronimo, and K. Fent, “The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males,” Toxicology and Applied Pharmacology, vol. 250, no. 2, pp. 137–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Schlumpf, B. Cotton, M. Conscience, V. Haller, B. Steinmann, and W. Lichtensteiger, “In vitro and in vivo estrogenicity of UV screens,” Environmental Health Perspectives, vol. 109, no. 3, pp. 239–244, 2001. View at Scopus
  60. B. van Der Burg, R. Schreurs, S. van der Linden, W. Seinen, A. Brouwer, and E. Sonneveld, “Endocrine effects of polycyclic musks: do we smell a rat?” International Journal of Andrology, vol. 31, no. 2, pp. 188–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Lemaire, W. Mnif, P. Mauvais, P. Balaguer, and R. Rahmani, “Activation of α- and β-estrogen receptors by persistent pesticides in reporter cell lines,” Life Sciences, vol. 79, no. 12, pp. 1160–1169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Du, O. Shen, H. Sun et al., “Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays,” Toxicological Sciences, vol. 116, no. 1, pp. 58–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Kojima, E. Katsura, S. Takeuchi, K. Niiyama, and K. Kobayashi, “Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells,” Environmental Health Perspectives, vol. 112, no. 5, pp. 524–531, 2004. View at Scopus
  64. G. Lemaire, B. Terouanne, P. Mauvais, S. Michel, and R. Rahmani, “Effect of organochlorine pesticides on human androgen receptor activation in vitro,” Toxicology and Applied Pharmacology, vol. 196, no. 2, pp. 235–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Q. Fan, T. Yanase, H. Morinaga et al., “Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans,” Environmental Health Perspectives, vol. 115, no. 5, pp. 720–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Orton, E. Rosivatz, M. Scholze, and A. Kortenkamp, “Widely used pesticides with previously unknown endocrine activity revealed as in Vitro antiandrogens,” Environmental Health Perspectives, vol. 119, no. 6, pp. 794–800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. H. R. Andersen, A. M. Vinggaard, T. H. Rasmussen, I. M. Gjermandsen, and E. Cecilie Bonefeld-Jørgensen, “Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro,” Toxicology and Applied Pharmacology, vol. 179, no. 1, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. H. T. Grünfeld and E. C. Bonefeld-Jorgensen, “Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels,” Toxicology Letters, vol. 151, no. 3, pp. 467–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. S. Kim, R. D. Lee, et al., “Potential estrogenic and antiandrogenic effects of permethrin in rats,” Journal of Reproduction and Development, vol. 51, no. 2, pp. 201–210, 2005. View at Publisher · View at Google Scholar
  70. H. R. Andersen, E. C. Bonefeld-Jørgensen, F. Nielsen, K. Jarfeldt, M. N. Jayatissa, and A. M. Vinggaard, “Estrogenic effects in vitro and in vivo of the fungicide fenarimol,” Toxicology Letters, vol. 163, no. 2, pp. 142–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Kitamura, T. Suzuki, S. Ohta, and N. Fujimoto, “Antiandrogenic activity and metabolism of the organophosphorus pesticide fenthion and related compounds,” Environmental Health Perspectives, vol. 111, no. 4, pp. 503–508, 2003. View at Scopus
  72. E. C. Bonefeld-Jorgensen, H. T. Grünfeld, and I. M. Gjermandsen, “Effect of pesticides on estrogen receptor transactivation in vitro: a comparison of stable transfected MVLN and transient transfected MCF-7 cells,” Molecular and Cellular Endocrinology, vol. 244, no. 1-2, pp. 20–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. B. Kjærstad, C. Taxvig, C. Nellemann, A. M. Vinggaard, and H. R. Andersen, “Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals,” Reproductive Toxicology, vol. 30, no. 4, pp. 573–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. S.S. Kim, S.J. Kwackac, R. Da Leea, et al., “Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays,” Journal of Toxicology and Environmental Health A, vol. 68, no. 23-24, pp. 2277–2289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. F. H. Comhaire, A. M. A. Mahmoud, and F. Schoonjans, “Sperm quality, birth rates and the environment in Flanders (Belgium),” Reproductive Toxicology, vol. 23, no. 2, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Bay, C. Asklund, N. E. Skakkebaek, and A. M. Andersson, “Testicular dysgenesis syndrome: possible role of endocrine disrupters,” Best Practice and Research, vol. 20, no. 1, pp. 77–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Auger, J. M. Kunstmann, F. Czyglik, and P. Jouannet, “Decline in semen quality among fertile men in Paris during the past 20 years,” The New England Journal of Medicine, vol. 332, no. 5, pp. 281–285, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Irvine, E. Cawood, D. Richardson, E. MacDonald, and J. Aitken, “Evidence of deteriorating semen quality in the United Kingdom: birth cohort study in 577 men in Scotland over 11 years,” British Medical Journal, vol. 312, no. 7029, pp. 467–471, 1996. View at Scopus
  79. S. H. Swan, E. P. Elkin, and L. Fenster, “The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996,” Environmental Health Perspectives, vol. 108, no. 10, pp. 961–966, 2000. View at Scopus
  80. T. K. Jensen, E. Carlsen, N. Jørgensen et al., “Poor semen quality may contribute to recent decline in fertility rates,” Human Reproduction, vol. 17, no. 6, pp. 1437–1440, 2002. View at Scopus
  81. T. G. Travison, A. B. Araujo, A. B. O'Donnell, V. Kupelian, and J. B. McKinlay, “A population-level decline in serum testosterone levels in American men,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 1, pp. 196–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. H. Scheike, L. Rylander, L. Carstensen et al., “Time trends in human fecundability in Sweden,” Epidemiology, vol. 19, no. 2, pp. 191–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. I. J. Bakken and F. E. Skjeldestad, “Time trends in ectopic pregnancies in a Norwegian county 1970–2004—a population-based study,” Human Reproduction, vol. 21, no. 12, pp. 3132–3136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Joffe, “Time trends in biological fertility in Britain,” The Lancet, vol. 355, no. 9219, pp. 1961–1965, 2000. View at Scopus
  85. M. Sallmén, C. R. Weinberg, D. D. Baird, M. L. Lindbohm, and A. J. Wilcox, “Has human fertility declined over time? Why we may never know,” Epidemiology, vol. 16, no. 4, pp. 494–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. D. L. Davis, P. Webster, H. Stainthorpe, J. Chilton, L. Jones, and R. Doi, “Declines in sex ratio at birth and fetal deaths in Japan, and in U.S. whites but not African Americans,” Environmental Health Perspectives, vol. 115, no. 6, pp. 941–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. C. Pesatori, D. Consonni, M. Rubagotti, P. Grillo, and P. A. Bertazzi, “Cancer incidence in the population exposed to dioxin after the “seveso accident“: twenty years of follow-up,” Environmental Health, vol. 8, no. 1, article 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. P. K. Mills and R. Yang, “Regression analysis of pesticide use and breast cancer incidence in California Latinas,” Journal of Environmental Health, vol. 68, no. 6, pp. 15–44, 2006. View at Scopus
  89. L. López-Carrillo, R. U. Hernández-Ramírez, A. M. Calafat et al., “Exposure to phthalates and breast cancer risk in Northern Mexico,” Environmental Health Perspectives, vol. 118, no. 4, pp. 539–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. M. Ibarluzea, M. F. Fernández, L. Santa-Marina et al., “Breast cancer risk and the combined effect of environmental estrogens,” Cancer Causes and Control, vol. 15, no. 6, pp. 591–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. J. F. Viel, M. C. Clément, M. Hägi, S. Grandjean, B. Challier, and A. Danzon, “Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure,” International Journal of Health Geographics, vol. 7, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. McElroy, M. M. Shafer, A. Trentham-Dietz, J. M. Hampton, and P. A. Newcomb, “Cadmium exposure and breast cancer risk,” Journal of the National Cancer Institute, vol. 98, no. 12, pp. 869–873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Nie, J. Beyea, M. R. Bonner et al., “Exposure to traffic emissions throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study,” Cancer Causes and Control, vol. 18, no. 9, pp. 947–955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Villeneuve, D. Cyr, E. Lynge et al., “Occupation and occupational exposure to endocrine disrupting chemicals in male breast cancer: a case-control study in Europe,” Occupational and Environmental Medicine, vol. 67, no. 12, pp. 837–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. P. Høyer, P. Grandjean, T. Jørgensen, J. W. Brock, and H. B. Hartvig, “Organochlorine exposure and risk of breast cancer,” The Lancet, vol. 352, no. 9143, pp. 1816–1820, 1998. View at Scopus
  96. T. I. Sung, P. C. Chen, L. Jyuhn-Hsiarn Lee, Y. P. Lin, G. Y. Hsieh, and J. D. Wang, “Increased standardized incidence ratio of breast cancer in female electronics workers,” BMC Public Health, vol. 7, article 102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. P. Rennix, M. M. Quinn, P. J. Amoroso, E. A. Eisen, and D. H. Wegman, “Risk of breast cancer among enlisted Army women occupationally exposed to volatile organic compounds,” American Journal of Industrial Medicine, vol. 48, no. 3, pp. 157–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. B. A. Cohn, M. S. Wolff, P. M. Cirillo, and R. I. Scholtz, “DDT and breast cancer in young women: new data on the significance of age at exposure,” Environmental Health Perspectives, vol. 115, no. 10, pp. 1406–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. G. H. Degen and H. M. Bolt, “Endocrine disruptors: update on xenoestrogens,” International Archives of Occupational and Environmental Health, vol. 73, no. 7, pp. 433–441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Santodonato, “Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity,” Chemosphere, vol. 34, no. 4, pp. 835–848, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Fechner, P. Damdimopoulou, and G. Gauglitz, “Biosensors paving the way to understanding the interaction between cadmium and the estrogen receptor alpha,” PLoS ONE, vol. 6, no. 8, Article ID e23048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Kortenkamp, “Are cadmium and other heavy metal compounds acting as endocrine disrupters?” Metal Ions in Life Sciences, vol. 8, pp. 305–317, 2011. View at Scopus
  103. M. P. Jain, F. Vaisheva, and D. Maysinger, “Metalloestrogenic effects of quantum dots,” Nanomedicine, vol. 7, no. 1, pp. 23–37, 2012. View at Publisher · View at Google Scholar
  104. K. Takeda, N. Tsukue, and S. Yoshida, “Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles,” Environmental Science & Technology, vol. 11, no. 1, pp. 33–45, 2004. View at Scopus
  105. D. R. Lewis, J. W. Southwick, R. Ouellet-Hellstrom, J. Rench, and R. L. Calderon, “Drinking water arsenic in Utah: a cohort mortality study,” Environmental Health Perspectives, vol. 107, no. 5, pp. 359–365, 1999. View at Scopus
  106. C. J. Chen and C. J. Wang, “Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms,” Cancer Research, vol. 50, no. 17, pp. 5470–5474, 1990. View at Scopus
  107. L. Hardell, S. O. Andersson, M. Carlberg et al., “Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer,” Journal of Occupational and Environmental Medicine, vol. 48, no. 7, pp. 700–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. M. M. Prince, A. M. Ruder, M. J. Hein et al., “Mortality and exposure response among 14,458 electrical capacitor manufacturing workers exposed to polychlorinated biphenyls (PCBs),” Environmental Health Perspectives, vol. 114, no. 10, pp. 1508–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. X. Xu, A. B. Dailey, E. O. Talbott, V. A. Ilacqua, G. Kearney, and N. R. Asal, “Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults,” Environmental Health Perspectives, vol. 118, no. 1, pp. 60–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. M. C. R. Alavanja, C. Samanic, M. Dosemeci et al., “Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort,” American Journal of Epidemiology, vol. 157, no. 9, pp. 800–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Van Maele-Fabry and J. L. Willems, “Prostate cancer among pesticide applicators: a meta-analysis,” International Archives of Occupational and Environmental Health, vol. 77, no. 8, pp. 559–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Van Maele-Fabry, V. Libotte, J. Willems, and D. Lison, “Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers,” Cancer Causes and Control, vol. 17, no. 4, pp. 353–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. Q. Y. Wu, H. Y. Hu, X. Zhao, Y. Li, and Y. Liu, “Characterization and identification of antiestrogenic products of phenylalanine chlorination,” Water Research, vol. 44, no. 12, pp. 3625–3634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Sidlova, J. Novak, et al., “Dioxin-like and endocrine disruptive activity of traffic-contaminated soil samples,” Archives of Environmental Contamination and Toxicology, vol. 57, no. 4, pp. 639–650, 2009. View at Publisher · View at Google Scholar
  115. J. Novák, V. Jálová, J. P. Giesy, and K. Hilscherová, “Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro,” Environment International, vol. 35, no. 1, pp. 43–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Mori, M. Inudo, Y. Takao et al., “In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system,” Environmental Sciences, vol. 14, no. 4, pp. 203–210, 2007. View at Scopus
  117. T. H. Ueng, H. W. Wang, Y. P. Huang, and C. C. Hung, “Antiestrogenic effects of motorcycle exhaust particulate in MCF-7 human breast cancer cells and immature female rats,” Archives of Environmental Contamination and Toxicology, vol. 46, no. 4, pp. 454–462, 2004. View at Scopus
  118. K. Chaloupka, N. Harper, V. Krishnan, M. Santostefano, L. V. Rodriguez, and S. Safe, “Synergistic activity of polynuclear aromatic hydrocarbon mixtures as aryl hydrocarbon (Ah) receptor agonists,” Chemico-Biological Interactions, vol. 89, no. 2-3, pp. 141–158, 1993. View at Scopus
  119. W. H. Yang, Z. Y. Wang, H. L. Liu, and H. X. Yu, “Exploring the binding features of polybrominated diphenyl ethers as estrogen receptor antagonists: docking studies,” SAR and QSAR in Environmental Research, vol. 21, no. 3, pp. 351–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. K. Sanfilippo, B. Pinto, M. P. Colombini, U. Bartolucci, and D. Reali, “Determination of trace endocrine disruptors in ultrapure water for laboratory use by the yeast estrogen screen (YES) and chemical analysis (GC/MS),” Journal of Chromatography B, vol. 878, no. 15-16, pp. 1190–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. E. C. Bonefeld-Jorgensen, “Biomonitoring in greenland: human biomarkers of exposure and effects—a short review,” Rural and Remote Health, vol. 10, no. 2, p. 1362, 2010. View at Scopus
  122. S. Chen, F. Zhang, M. A. Sherman, et al., “Structure-function studies of aromatase and its inhibitors: a progress report,” Journal of Steroid Biochemistry and Molecular Biology, vol. 86, no. 3–5, pp. 231–237, 2003. View at Publisher · View at Google Scholar
  123. S. A. Whitehead and S. Rice, “Endocrine-disrupting chemicals as modulators of sex steroid synthesis,” Best Practice and Research, vol. 20, no. 1, pp. 45–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Raven, F. H. de Jong, J. M. Kaufman, and W. de Ronde, “In men, peripheral estradiol levels directly reflect the action of estrogens at the hypothalamo-pituitary level to inhibit gonadotropin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3324–3328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Kohrle, “Environment and endocrinology: the case of thyroidology,” Annales d'Endocrinologie, vol. 69, no. 2, pp. 116–122, 2008. View at Publisher · View at Google Scholar
  126. P. J. Hofmann, L. Schomburg, and J. Köhrle, “Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation,” Toxicological Sciences, vol. 110, no. 1, pp. 125–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. N. K. Brar, C. Waggoner, J. A. Reyes, R. Fairey, and K. M. Kelley, “Evidence for thyroid endocrine disruption in wild fish in San Francisco Bay, California, USA. Relationships to contaminant exposures,” Aquatic Toxicology, vol. 96, no. 3, pp. 203–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Maervoet, G. Vermeir, A. Covaci et al., “Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates,” Environmental Health Perspectives, vol. 115, no. 12, pp. 1780–1786, 2007. View at Scopus
  129. R. A. Heimeier and Y. B. Shi, “Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol A on thyroid hormone action,” General and Comparative Endocrinology, vol. 168, no. 2, pp. 181–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. A. B. Dann and A. Hontela, “Triclosan: environmental exposure, toxicity and mechanisms of action,” Journal of Applied Toxicology, vol. 31, no. 4, pp. 285–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. S. N. Kuriyama, A. Wanner, A. A. Fidalgo-Neto, C. E. Talsness, W. Koerner, and I. Chahoud, “Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels,” Toxicology, vol. 242, no. 1–3, pp. 80–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Schreiber, K. Gassmann, C. Götz et al., “Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption,” Environmental Health Perspectives, vol. 118, no. 4, pp. 572–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. S. M. Lin, F. A. Chen, Y. F. Huang et al., “Negative associations between PBDE levels and thyroid hormones in cord blood,” International Journal of Hygiene and Environmental Health, vol. 214, no. 2, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Wei, Y. Liu, J. Wang, Y. Tao, and J. Dai, “Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus),” Toxicology and Applied Pharmacology, vol. 226, no. 3, pp. 285–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Melzer, N. Rice, M. H. Depledge, W. E. Henley, and T. S. Galloway, “Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey,” Environmental Health Perspectives, vol. 118, no. 5, pp. 686–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. K. M. Crofton, E. S. Craft, J. M. Hedge et al., “Thyroid-hormone-disrupting chemicals: evidence for dose-dependent additivity or synergism,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1549–1554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. P. R. S. Kodavanti and M. C. Curras-Collazo, “Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity,” Frontiers in Neuroendocrinology, vol. 31, no. 4, pp. 479–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. S. M. Lelli, N. R. Ceballos, M. B. Mazzetti, C. A. Aldonatti, and L. C. San Martín de Viale, “Hexachlorobenzene as hormonal disruptor-studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis,” Biochemical Pharmacology, vol. 73, no. 6, pp. 873–879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Billi de Catabbi, N. Sterin-Speziale, M. C. Fernandez, C. Minutolo, C. Aldonatti, and L. San Martin de Viale, “Time course of hexachlorobenzene-induced alterations of lipid metabolism and their relation to porphyria,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 2, pp. 335–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  140. S. C. Billi de Catabbi, A. Faletti, F. Fuentes, L. C. San Martín de Viale, and A. C. Cochón, “Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment,” Toxicology and Applied Pharmacology, vol. 204, no. 2, pp. 187–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. J. F. Viel, C. Daniau, S. Goria et al., “Risk for non Hodgkin's lymphoma in the vicinity of French municipal solid waste incinerators,” Environmental Health, vol. 7, article 51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. J. F. Viel, N. Floret, E. Deconinck, J. F. Focant, E. De Pauw, and J. Y. Cahn, “Increased risk of non-Hodgkin lymphoma and serum organochlorine concentrations among neighbors of a municipal solid waste incinerator,” Environment International, vol. 37, no. 2, pp. 449–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. D. Werck-Reichhart and R. Feyereisen, “Cytochromes P450: a success story,” Genome Biology, vol. 1, no. 6, Article ID REVIEWS3003, 2000. View at Scopus
  144. C. Dietrich and B. Kaina, “The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth,” Carcinogenesis, vol. 31, no. 8, pp. 1319–1328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Puga, C. Ma, and J. L. Marlowe, “The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways,” Biochemical Pharmacology, vol. 77, no. 4, pp. 713–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. J. E. Huff, A. G. Salmon, N. K. Hooper, and L. Zeise, “Long-term carcinogenesis studies on 2,3,7,8-tetrachlorodibenzo-p-dioxin and hexachlorodibenzo-p-dioxins,” Cell Biology and Toxicology, vol. 7, no. 1, pp. 67–94, 1991. View at Scopus
  147. M. Sjögren, L. Ehrenberg, and U. Rannug, “Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency,” Mutation Research, vol. 358, no. 1, pp. 97–112, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. N. van Larebeke, L. Hens, P. Schepens et al., “The Belgian PCB and dioxin incident of January–June 1999: exposure data and potential impact on health,” Environmental Health Perspectives, vol. 109, no. 3, pp. 265–273, 2001. View at Scopus
  149. Z. Andrysik, J. Vondracek, et al., “Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons,” Mutation Research, vol. 714, pp. 53–62, 2011. View at Publisher · View at Google Scholar
  150. H. R. Andersen, F. Nielsen, J. B. Nielsen, M. B. Kjaerstad, J. Baelum, and P. Grandjean, “Xeno-oestrogenic activity in serum as marker of occupational pesticide exposure,” Occupational and Environmental Medicine, vol. 64, no. 10, pp. 708–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. M. J. Lopez-Espinosa, E. Silva, A. Granada et al., “Assessment of the total effective xenoestrogen burden in extracts of human placentas,” Biomarkers, vol. 14, no. 5, pp. 271–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. E. C. Bonefeld-Jorgensen, P. S. Hjelmborg, T. S. Reinert et al., “Xenoestrogenic activity in blood of European and Inuit populations,” Environmental Health, vol. 5, article 12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice et al., “Endocrine-disrupting chemicals: an Endocrine Society scientific statement,” Endocrine Reviews, vol. 30, no. 4, pp. 293–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. M. A. García, D. Peña, L. Álvarez et al., “Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor α-dependent manner in MCF-7 breast cancer cell line,” Toxicology Letters, vol. 192, no. 2, pp. 195–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. G. M. Calaf and D. Roy, “Cancer genes induced by malathion and parathion in the presence of estrogen in breast cells,” International Journal of Molecular Medicine, vol. 21, no. 2, pp. 261–268, 2008. View at Scopus
  156. S. Liu, S. Li, and Y. Du, “Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating rho-associated kinase (ROCK),” PLoS ONE, vol. 5, no. 6, Article ID e11272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Ptak, G. Ludewig, A. Rak, W. Nadolna, M. Bochenek, and E. L. Gregoraszczuk, “Induction of cytochrome P450 1A1 in MCF-7 human breast cancer cells by 4-chlorobiphenyl (PCB3) and the effects of its hydroxylated metabolites on cellular apoptosis,” Environment International, vol. 36, no. 8, pp. 935–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. I. Weng, P. Y. Hsu, S. Liyanarachchi et al., “Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells,” Toxicology and Applied Pharmacology, vol. 248, no. 2, pp. 111–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. E. W. LaPensee, T. R. Tuttle, S. R. Fox, and N. Ben-Jonathan, “Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-α-positive and -negative breast cancer cells,” Environmental Health Perspectives, vol. 117, no. 2, pp. 175–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. C. L. Siewit, B. Gengler, E. Vegas, R. Puckett, and M. C. Louie, “Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERα and c-Jun,” Molecular Endocrinology, vol. 24, no. 5, pp. 981–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. X. Yu, E. J. Filardo, and Z. A. Shaikh, “The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 83–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Benbrahim-Tallaa, E. J. Tokar, B. A. Diwan, A. L. Dill, J. F. Coppin, and M. P. Waalkes, “Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1847–1852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. S. V. Fernandez and J. Russo, “Estrogen and Xenoestrogens in breast cancer,” Toxicologic Pathology, vol. 38, no. 1, pp. 110–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. P. F. Valerón, J. J. Pestano, O. P. Luzardo, M. L. Zumbado, M. Almeida, and L. D. Boada, “Differential effects exerted on human mammary epithelial cells by environmentally relevant organochlorine pesticides either individually or in combination,” Chemico-Biological Interactions, vol. 180, no. 3, pp. 485–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. A. K. Charles and P. D. Darbre, “Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro,” Journal of Applied Toxicology, vol. 29, no. 5, pp. 422–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. D. J. Veselik, S. Divekar, S. Dakshanamurthy et al., “Activation of estrogen receptor-α by the anion nitrite,” Cancer Research, vol. 68, no. 10, pp. 3950–3958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. M. D. Anway, C. Leathers, and M. K. Skinner, “Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease,” Endocrinology, vol. 147, no. 12, pp. 5515–5523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Jenkins, C. Rowell, J. Wang, and C. A. Lamartiniere, “Prenatal TCDD exposure predisposes for mammary cancer in rats,” Reproductive Toxicology, vol. 23, no. 3, pp. 391–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. L. N. Vandenberg, M. V. Maffini, C. M. Schaeberle et al., “Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice,” Reproductive Toxicology, vol. 26, no. 3-4, pp. 210–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. T. J. Murray, M. V. Maffini, A. A. Ucci, C. Sonnenschein, and A. M. Soto, “Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure,” Reproductive Toxicology, vol. 23, no. 3, pp. 383–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Durando, L. Kass, J. Piva et al., “Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in wistar rats,” Environmental Health Perspectives, vol. 115, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Jenkins, N. Raghuraman, I. Eltoum, M. Carpenter, J. Russo, and C. A. Lamartiniere, “Oral exposure to Bisphenol A increases dimethylbenzanthraceneo-induced mammary cancer in rats,” Environmental Health Perspectives, vol. 117, no. 6, pp. 910–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. C. M. Markey, E. H. Luque, M. M. De Toro, C. Sonnenschein, and A. M. Soto, “In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland,” Biology of Reproduction, vol. 71, no. 5, p. 1753, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Russo and I. H. Russo, “DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis,” Journal of the National Cancer Institute, vol. 61, no. 6, pp. 1451–1459, 1978. View at Scopus
  175. N. Khanjani, J. L. Hoving, A. B. Forbes, and M. R. Sim, “Systematic review and meta-analysis of cyclodiene insecticides and breast cancer,” Journal of Environmental Science and Health C, vol. 25, no. 1, pp. 23–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. P. K. Mills and R. Yang, “Breast cancer risk in Hispanic agricultural workers in California,” International Journal of Occupational and Environmental Health, vol. 11, no. 2, pp. 123–131, 2005. View at Scopus
  177. G. S. Prins, “Endocrine disruptors and prostate cancer risk,” Endocrine-Related Cancer, vol. 15, no. 3, pp. 649–656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. M. V. Maffini, B. S. Rubin, C. Sonnenschein, and A. M. Soto, “Endocrine disruptors and reproductive health: the case of bisphenol-A,” Molecular and Cellular Endocrinology, vol. 254-255, pp. 179–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Schlumpf, S. Durrer, et al., “Developmental toxicity of UV filters and environmental exposure: a review,” International Journal of Andrology, vol. 31, no. 2, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  180. M. Schlumpf, P. Schmid, S. Durrer et al., “Endocrine activity and developmental toxicity of cosmetic UV filters—an update,” Toxicology, vol. 205, no. 1-2, pp. 113–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. L. Hofkamp, S. Bradley, J. Tresguerres, W. Lichtensteiger, M. Schlumpf, and B. Timms, “Region-specific growth effects in the developing rat prostate following fetal exposure to estrogenic ultraviolet filters,” Environmental Health Perspectives, vol. 116, no. 7, pp. 867–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. L. Benbrahim-Tallaa, R. A. Waterland, A. L. Dill, M. M. Webber, and M. P. Waalkes, “Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de Novo DNA methyltransferase,” Environmental Health Perspectives, vol. 115, no. 10, pp. 1454–1459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. M. P. Waalkes, “Cadmium carcinogenesis in review,” Journal of Inorganic Biochemistry, vol. 79, no. 1–4, pp. 241–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  184. L. Benbrahim-Tallaa and M. P. Waalkes, “Inorganic arsenic and human prostate cancer,” Environmental Health Perspectives, vol. 116, no. 2, pp. 158–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. V. Kumar, C. S. Yadav, S. Singh et al., “CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer,” Chemosphere, vol. 81, no. 4, pp. 464–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. R. Mahajan, M. R. Bonner, J. A. Hoppin, and M. C. R. Alavanja, “Phorate exposure and incidence of cancer in the agricultural health study,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1205–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  187. R. J. Aitken, N. E. Skakkebaek, and S. D. Roman, “Male reproductive health and the environment,” Medical Journal of Australia, vol. 185, no. 8, pp. 414–415, 2006. View at Scopus
  188. N. E. Skakkebæk, E. Rajpert-De Meyts, and K. M. Main, “Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects,” Human Reproduction, vol. 16, no. 5, pp. 972–978, 2001. View at Scopus
  189. N. Jørgensen, M. Vierula, R. Jacobsen et al., “Recent adverse trends in semen quality and testis cancer incidence among Finnish men,” International Journal of Andrology, vol. 34, no. 4, pp. e37–e48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Merhi, H. Raynal, E. Cahuzac, F. Vinson, J. P. Cravedi, and L. Gamet-Payrastre, “Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies,” Cancer Causes and Control, vol. 18, no. 10, pp. 1209–1226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. A. C. Pesatori, C. Zocchetti, S. Guercilena, D. Consonni, D. Turrini, and P. A. Bertazzi, “Dioxin exposure and non-malignant health effects: a mortality study,” Occupational and Environmental Medicine, vol. 55, no. 2, pp. 126–131, 1998. View at Scopus
  192. S. Fierens, H. Mairesse, J. F. Heilier et al., “Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium,” Biomarkers, vol. 8, no. 6, pp. 529–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. M. P. Longnecker, M. A. Klebanoff, J. W. Brock, and H. Zhou, “Polychlorinated biphenyl serum levels in pregnant subjects with diabetes,” Diabetes Care, vol. 24, no. 6, pp. 1099–1101, 2001. View at Scopus
  194. M. Cranmer, S. Louie, R. H. Kennedy, P. A. Kern, and V. A. Fonseca, “Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance,” Toxicological Sciences, vol. 56, no. 2, pp. 431–436, 2000. View at Scopus
  195. L. Rylander, A. Rignell-Hydbom, and L. Hagmar, “A cross-sectional study of the association between persistent organochlorine pollutants and diabetes,” Environmental Health, vol. 4, article 28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. D. H. Lee, I. K. Lee, K. Song et al., “A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002,” Diabetes Care, vol. 29, no. 7, pp. 1638–1644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. D. H. Lee, I. K. Lee, M. Steffes, and D. R. Jacobs Jr., “Extended analyses of the association between serum concentrations of persistent organic pollutants and diabetes,” Diabetes Care, vol. 30, no. 6, pp. 1596–1598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. D. H. Lee, I. N. K. Lee, S. H. Jin, M. Steffes, and D. R. Jacobs Jr., “Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002,” Diabetes Care, vol. 30, no. 3, pp. 622–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. J. S. Lim, D. H. Lee, and D. R. Jacobs Jr., “Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003–2004,” Diabetes Care, vol. 31, no. 9, pp. 1802–1807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. K. Svensson, R. U. Hernández-Ramírez, A. Burguete-García et al., “Phthalate exposure associated with self-reported diabetes among Mexican women,” Environmental Research, vol. 111, no. 6, pp. 792–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  201. H. Uemura, K. Arisawa, M. Hiyoshi et al., “Associations of environmental exposure to dioxins with prevalent diabetes among general inhabitants in Japan,” Environmental Research, vol. 108, no. 1, pp. 63–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. D. H. Lee, M. W. Steffes, A. Sjödin, R. S. Jones, L. L. Needham, and D. R. Jacobs Jr., “Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study,” Environmental Health Perspectives, vol. 118, no. 9, pp. 1235–1242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. P. Alonso-Magdalena, I. Quesada, and A. Nadal, “Endocrine disruptors in the etiology of type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 7, no. 6, pp. 346–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  204. J. Ruzzin, R. Petersen, E. Meugnier et al., “Persistent organic pollutant exposure leads to insulin resistance syndrome,” Environmental Health Perspectives, vol. 118, no. 4, pp. 465–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. T. L. Lassiter, I. T. Ryde, E. A. MacKillop et al., “Exposure of neonatal rats to parathion elicits sex-selective reprogramming of metabolism and alters the response to a high-fat diet in adulthood,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1456–1462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Lim, S. Y. Ahn, I. C. Song et al., “Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance,” PLoS ONE, vol. 4, no. 4, Article ID e5186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. A. B. Ropero, P. Onso-Magdalena, E. Garcia-Garcia, et al., “Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis 2,” International Journal of Andrology, vol. 31, no. 2, pp. 194–200, 2008. View at Publisher · View at Google Scholar
  208. J. Boberg, S. Metzdorff, R. Wortziger et al., “Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats,” Toxicology, vol. 250, no. 2-3, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  209. D. S. Paul, A. W. Harmon, V. Devesa, D. J. Thomas, and M. Stýblo, “Molecular mechanisms of the diabetogenic effects of arsenic inhibition of insulin signaling by arsenite and methylarsonous acid,” Environmental Health Perspectives, vol. 115, no. 5, pp. 734–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. M. P. Longnecker and J. L. Daniels, “Environmental contaminants as etiologic factors for diabetes,” Environmental Health Perspectives, vol. 109, supplement 6, pp. 871–876, 2001. View at Scopus
  211. C. J. Everett, I. Frithsen, and M. Player, “Relationship of polychlorinated biphenyls with type 2 diabetes and hypertension,” Journal of Environmental Monitoring, vol. 13, no. 2, pp. 241–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. R. W. Stahlhut, E. van Wijngaarden, T. D. Dye, S. Cook, and S. H. Swan, “Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males,” Environmental Health Perspectives, vol. 115, no. 6, pp. 876–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  213. M. P. Longnecker, “On confounded fishy results regarding arsenic and diabetes,” Epidemiology, vol. 20, no. 6, pp. 821–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. N. F. Kolachi, T. G. Kazi, et al., “Status of toxic metals in biological samples of diabetic mothers and their neonates,” Biological Trace Element Research, vol. 143, no. 1, pp. 196–212, 2011. View at Publisher · View at Google Scholar
  215. D. E. Hutcheon, J. Kantrowitz, R. N. Van Gelder, and E. Flynn, “Factors affecting plasma benzo[a]pyrene levels in environmental studies,” Environmental Research, vol. 32, no. 1, pp. 104–110, 1983. View at Scopus
  216. P. Irigaray, V. Ogier, S. Jacquenet et al., “Benzo[a]pyrene impairs β-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice: a novel molecular mechanism of toxicity for a common food pollutant,” FEBS Journal, vol. 273, no. 7, pp. 1362–1372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. W. Dhooge, E. Den Hond, G. Koppen et al., “Internal exposure to pollutants and body size in Flemish adolescents and adults: associations and dose-response relationships,” Environment International, vol. 36, no. 4, pp. 330–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. F. Grün and B. Blumberg, “Endocrine disrupters as obesogens,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 19–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  219. F. Grun, “Obesogens,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 453–459, 2010. View at Publisher · View at Google Scholar
  220. E. E. Hatch, J. W. Nelson, M. M. Qureshi et al., “Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002,” Environmental Health, vol. 7, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. A. A. Hoppe and G. B. Carey, “Polybrominated diphenyl ethers as endocrine disruptors of adipocyte metabolism,” Obesity, vol. 15, no. 12, pp. 2942–2950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  222. T. I. Halldorsson, D. Rytter, et al., “Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study,” Environmental Health Perspectives, vol. 120, no. 5, pp. 668–673, 2012. View at Publisher · View at Google Scholar
  223. J. J. Heindel and F. S. vom Saal, “Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 90–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. D. H. Lee, I. K. Lee, M. Porta, M. Steffes, and D. R. Jacobs Jr., “Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002,” Diabetologia, vol. 50, no. 9, pp. 1841–1851, 2007. View at Publisher · View at Google Scholar · View at Scopus
  225. H. Uemura, K. Arisawa, M. Hiyoshi et al., “Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan's general population,” Environmental Health Perspectives, vol. 117, no. 4, pp. 568–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. S. S. White, S. E. Fenton, and E. P. Hines, “Endocrine disrupting properties of perfluorooctanoic acid,” Journal of Steroid Biochemistry and Molecular Biology, vol. 127, no. 1–2, pp. 16–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  227. R. Carson, Silent Spring, Houghton Mifflin, Boston, Mass, USA, 1962.
  228. M. Gilbertson, T. Kubiak, J. Ludwig, and G. Fox, “Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonical fish-eating birds: similarity to chick-edema disease,” Journal of Toxicology and Environmental Health, vol. 33, no. 4, pp. 455–520, 1991. View at Scopus
  229. L. J. Guillette, T. S. Gross, G. R. Masson, J. M. Matter, H. F. Percival, and A. R. Woodward, “Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida,” Environmental Health Perspectives, vol. 102, no. 8, pp. 680–688, 1994. View at Scopus
  230. T. Colborn and C. Clement, Chemically-Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection, Princeton University Press, Princeton, NJ, USA, 1992.
  231. T. Colborn, D. Dumanoski, and J. P. Myers, Our stolen future, Dutton, Penguin Books, New York, NY, USA, 1996.
  232. T. B. Hayes, A. Collins, M. Lee et al., “Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5476–5480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  233. Z. Shi, K. E. Valdez, A. Y. Ting, A. Franczak, S. L. Gum, and B. K. Petroff, “Ovarian endocrine disruption underlies premature reproductive senescence following environmentally relevant chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Biology of Reproduction, vol. 76, no. 2, pp. 198–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. S. Salian, T. Doshi, and G. Vanage, “Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring,” Life Sciences, vol. 85, no. 21-22, pp. 742–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. C. A. Mackenzie, A. Lockridge, and M. Keith, “Declining sex ratio in a First Nation community,” Environmental Health Perspectives, vol. 113, no. 10, pp. 1295–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  236. P. Mocarelli, P. Brambilla, M. P. Gerthoux, D. G. Patterson, and L. L. Needham, “Change in sex ratio with exposure to dioxin,” The Lancet, vol. 348, no. 9024, p. 409, 1996. View at Scopus
  237. N. A. van Larebeke, A. J. Sasco, J. T. Brophy, M. M. Keith, M. Gilbertson, and A. Watterson, “Sex ratio changes as sentinel health events of endocrine disruption,” International Journal of Occupational and Environmental Health, vol. 14, no. 2, pp. 138–143, 2008. View at Scopus
  238. A. L. Herbst, M. M. Hubby, F. Azizi, and M. M. Makii, “Reproductive and gynecologic surgical experience in diethylstilbestrol-exposed daughters,” American Journal of Obstetrics and Gynecology, vol. 141, no. 8, pp. 1019–1028, 1981. View at Scopus
  239. F. I. Sharara, D. B. Seifer, and J. A. Flaws, “Environmental toxicants and female reproduction,” Fertility and Sterility, vol. 70, no. 4, pp. 613–622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  240. S. J. Genuis, “Health issues and the environment—an emerging paradigm for providers of obstetrical and gynaecological health care,” Human Reproduction, vol. 21, no. 9, pp. 2201–2208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  241. T. K. Jensen, T. B. Henriksen, N. H. I. Hjollund et al., “Adult and prenatal exposures to tobacco smoke as risk indicators of fertility among 430 Danish couples,” American Journal of Epidemiology, vol. 148, no. 10, pp. 992–997, 1998. View at Scopus
  242. G. S. Cooper, M. A. Klebanoff, J. Promislow, J. W. Brock, and M. P. Longnecker, “Polychlorinated biphenyls and menstrual cycle characteristics,” Epidemiology, vol. 16, no. 2, pp. 191–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  243. G. C. Windham, D. Lee, P. Mitchell, M. Anderson, M. Petreas, and B. Lasley, “Exposure to organochlorine compounds and effects on ovarian function,” Epidemiology, vol. 16, no. 2, pp. 182–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  244. B. A. Cohn, P. M. Cirillo, M. S. Wolff et al., “DDT and DDE exposure in mothers and time to pregnancy in daughters,” The Lancet, vol. 361, no. 9376, pp. 2205–2206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  245. C. Fei, J. K. McLaughlin, L. Lipworth, and J. Olsen, “Maternal levels of perfluorinated chemicals and subfecundity,” Human Reproduction, vol. 24, no. 5, pp. 1200–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  246. S. A. Missmer, S. E. Hankinson, D. Spiegelman, R. L. Barbieri, K. B. Michels, and D. J. Hunter, “In utero exposures and the incidence of endometriosis,” Fertility and Sterility, vol. 82, no. 6, pp. 1501–1508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  247. L. Cobellis, G. Latini, C. deFelice et al., “High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis,” Human Reproduction, vol. 18, no. 7, pp. 1512–1515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  248. B. S. Reddy, R. Rozati, B. V. R. Reddy, and N. V. V. S. S. Raman, “Association of phthalate esters with endometriosis in Indian women,” An International Journal of Obstetrics and Gynaecology, vol. 113, no. 5, pp. 515–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  249. L. Storgaard, J. P. Bonde, E. Ernst et al., “Does smoking during pregnancy affect sons' sperm counts?” Epidemiology, vol. 14, no. 3, pp. 278–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  250. T. K. Jensenl, N. Jørgensen, M. Punab et al., “Association of in Utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European Countries,” American Journal of Epidemiology, vol. 159, no. 1, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  251. P. C. Hsu, W. Huang, W. J. Yao, M. H. Wu, Y. L. Guo, and G. H. Lambert, “Sperm changes in men exposed to polychlorinated biphenyls and dibenzofurans,” Journal of the American Medical Association, vol. 289, no. 22, pp. 2943–2944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  252. Y. L. Guo, P. C. Hsu, C. C. Hsu, and G. H. Lambert, “Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans,” The Lancet, vol. 356, no. 9237, pp. 1240–1241, 2000. View at Scopus
  253. P. Mocarelli, P. M. Gerthoux, D. G. Patterson et al., “Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality,” Environmental Health Perspectives, vol. 116, no. 1, pp. 70–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. J. W. Dallinga, E. J. C. Moonen, J. C. M. Dumoulin, J. L. H. Evers, J. P. M. Geraedts, and J. C. S. Kleinjans, “Decreased human semen quality and organochlorine compounds in blood,” Human Reproduction, vol. 17, no. 8, pp. 1973–1979, 2002. View at Scopus
  255. J. Richthoff, L. Rylander, B. A. G. Jönsson et al., “Serum levels of 2,2,4,4,5,5-hexaclorobiphenyl (CB-153) in relation to markers of reproductive function in young males from the general Swedish population,” Environmental Health Perspectives, vol. 111, no. 4, pp. 409–413, 2003. View at Scopus
  256. R. Hauser, Z. Chen, L. Pothier, L. Ryan, and L. Altshul, “The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p-DDE,” Environmental Health Perspectives, vol. 111, no. 12, pp. 1505–1511, 2003. View at Scopus
  257. A. Rignell-Hydbom, L. Rylander, A. Giwercman, B. A. G. Jönsson, P. Nilsson-Ehle, and L. Hagmar, “Exposure to CB-153 and p,p′-DDE and male reproductive function,” Human Reproduction, vol. 19, no. 9, pp. 2066–2075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  258. S. H. Swan, R. L. Kruse, F. Liu et al., “Semen quality relation to biomarkers of pesticide exposure,” Environmental Health Perspectives, vol. 111, no. 12, pp. 1478–1484, 2003. View at Scopus
  259. J. D. Meeker, L. Ryan, D. B. Barr et al., “The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality,” Environmental Health Perspectives, vol. 112, no. 17, pp. 1665–1670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  260. U. N. Joensen, R. Bossi, H. Leffers, A. A. Jensen, N. E. Skakkebæk, and N. Jørgensen, “Do Perfluoroalkyl compounds impair human semen quality?” Environmental Health Perspectives, vol. 117, no. 6, pp. 923–927, 2009. View at Publisher · View at Google Scholar · View at Scopus
  261. S. Tališman, P. Cvitković, J. Jurasović, A. Pizent, M. Gavella, and B. Ročić, “Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men,” Environmental Health Perspectives, vol. 108, no. 1, pp. 45–53, 2000. View at Scopus
  262. L. Fenster, K. Waller, G. Windham et al., “Trihalomethane levels in home tap water and semen quality,” Epidemiology, vol. 14, no. 6, pp. 650–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  263. S. G. Selevan, L. Borkovec, V. L. Slott et al., “Semen quality and reproductive health of young Czech men exposed to seasonal air pollution,” Environmental Health Perspectives, vol. 108, no. 9, pp. 887–894, 2000. View at Scopus
  264. J. Rubes, S. G. Selevan, D. P. Evenson et al., “Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality,” Human Reproduction, vol. 20, no. 10, pp. 2776–2783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  265. B. A. G. Jönsson, J. Richthoff, L. Rylander, A. Giwercman, and L. Hagmar, “Urinary phthalate metabolites and biomarkers of reproductive function in young men,” Epidemiology, vol. 16, no. 4, pp. 487–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  266. R. Hauser, J. D. Meeker, S. Duty, M. J. Silva, and A. M. Calafat, “Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites,” Epidemiology, vol. 17, no. 6, pp. 682–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  267. R. Hauser, J. D. Meeker, N. P. Singh et al., “DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites,” Human Reproduction, vol. 22, no. 3, pp. 688–695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  268. S. Swan, K. M. Main, F. Liu, et al., “Decrease in anogenital distance among male infants with prenatal phthalate exposure,” Environmental Health Perspectives, vol. 113, no. 9, Article ID A583, 2005. View at Scopus
  269. S. H. Swan, F. Liu, J. W. Overstreet, C. Brazil, and N. E. Skakkebaek, “Semen quality of fertile US males in relation to their mothers' beef consumption during pregnancy,” Human Reproduction, vol. 22, no. 6, pp. 1497–1502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  270. F. S. vom Saal, “Could hormone residues be involved?” Human Reproduction, vol. 22, no. 6, pp. 1503–1505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  271. P. D. Gluckman, M. A. Hanson, and A. S. Beedle, “Early life events and their consequences for later disease: a life history and evolutionary perspective,” American Journal of Human Biology, vol. 19, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  272. T. K. Jensen, N. Jørgensen, C. Asklund et al., “Self-rated health and semen quality among 3,457 young Danish men,” Fertility and Sterility, vol. 88, no. 5, pp. 1366–1373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  273. T. K. Jensen, R. Jacobsen, K. Christensen, N. C. Nielsen, and E. Bostofte, “Good semen quality and life expectancy: a cohort study of 43,277 men,” American Journal of Epidemiology, vol. 170, no. 5, pp. 559–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  274. K. A. Boisen, M. Kaleva, K. M. Main et al., “Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries,” The Lancet, vol. 363, no. 9417, pp. 1264–1269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  275. K. A. Boisen, M. Chellakooty, I. M. Schmidt et al., “Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4041–4046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  276. N. E. Skakkebaek, N. Jorgensen, et al., “Is human fecundity declining?” International Journal of Andrology, vol. 29, no. 1, pp. 2–11, 2006. View at Publisher · View at Google Scholar
  277. M. H. Hsieh, B. N. Breyer, M. L. Eisenberg, and L. S. Baskin, “Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption,” Current Urology Reports, vol. 9, no. 2, pp. 137–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  278. F. Perera, K. Hemminki, W. Jedrychowski et al., “In Utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 10, pp. 1134–1137, 2002. View at Scopus
  279. L. S. Birnbaum and S. E. Fenton, “Cancer and developmental exposure to endocrine disruptors,” Environmental Health Perspectives, vol. 111, no. 4, pp. 389–394, 2003. View at Scopus
  280. G. S. Prins, L. Birch, W. Y. Tang, and S. M. Ho, “Developmental estrogen exposures predispose to prostate carcinogenesis with aging,” Reproductive Toxicology, vol. 23, no. 3, pp. 374–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  281. G. S. Prins, W. Y. Tang, J. Belmonte, and S. M. Ho, “Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 134–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  282. A. M. Soto, L. N. Vandenberg, M. V. Maffini, and C. Sonnenschein, “Does breast cancer start in the womb?” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 125–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. M. Soffritti, F. Belpoggi, D. D. Esposti, L. Falcioni, and L. Bua, “Consequences of exposure to carcinogens beginning during developmental life,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 118–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  284. M. H. Vickers, S. O. Krechowec, and B. H. Breier, “Is later obesity programmed in utero?” Current Drug Targets, vol. 8, no. 8, pp. 923–934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  285. R. R. Newbold, E. Padilla-Banks, R. J. Snyder, and W. N. Jefferson, “Perinatal exposure to environmental estrogens and the development of obesity,” Molecular Nutrition and Food Research, vol. 51, no. 7, pp. 912–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  286. M. A. Hanson and P. D. Gluckman, “Developmental origins of health and disease: new insights,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 90–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  287. B. K. Barlow, E. K. Richfield, D. A. Cory-Slechta, and M. Thiruchelvam, “A fetal risk factor for Parkinson's disease,” Developmental Neuroscience, vol. 26, no. 1, pp. 11–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  288. B. K. Barlow, D. A. Cory-Slechta, E. K. Richfield, and M. Thiruchelvam, “The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder,” Reproductive Toxicology, vol. 23, no. 3, pp. 457–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  289. D. A. Cory-Slechta, M. Thiruchelvam, B. K. Barlow, and E. K. Richfield, “Developmental pesticide models of the Parkinson disease phenotype,” Environmental Health Perspectives, vol. 113, no. 9, pp. 1263–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  290. P. M. Carvey, A. Punati, and M. B. Newman, “Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis,” Cell Transplantation, vol. 15, no. 3, pp. 239–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  291. S. A. Lloyd, C. J. Faherty, and R. J. Smeyne, “Adult and in utero exposure to cocaine alters sensitivity to the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Neuroscience, vol. 137, no. 3, pp. 905–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  292. M. G. Ross, M. Desai, O. Khorram, R. A. McKnight, R. H. Lane, and J. Torday, “Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease,” Current Alzheimer Research, vol. 4, no. 2, pp. 213–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  293. S. Ceccatelli, C. Tamm, Q. Zhang, and M. Chen, “Mechanisms and modulation of neural cell damage induced by oxidative stress,” Physiology and Behavior, vol. 92, no. 1-2, pp. 87–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  294. J. Wu, M. R. Basha, and N. H. Zawia, “The environment, epigenetics and amyloidogenesis,” Journal of Molecular Neuroscience, vol. 34, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  295. J. Verheyde and M. A. Benotmane, “Unraveling the fundamental molecular mechanisms of morphological and cognitive defects in the irradiated brain,” Brain Research Reviews, vol. 53, no. 2, pp. 312–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  296. D. A. Lewis and P. Levitt, “Schizophrenia as a disorder of neurodevelopment,” Annual Review of Neuroscience, vol. 25, pp. 409–432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  297. K. N. Loganovsky, S. V. Volovik, K. G. Manton, D. A. Bazyka, and P. Flor-Henry, “Whether ionizing radiation is a risk factor for schizophrenia spectrum disorders?” World Journal of Biological Psychiatry, vol. 6, no. 4, pp. 212–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  298. R. M. Steinberg, T. E. Juenger, and A. C. Gore, “The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats,” Hormones and Behavior, vol. 51, no. 3, pp. 364–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  299. Y. W. Chung and L. G. Clemens, “Effects of perinatal exposure to polychlorinated biphenyls on development of female sexual behavior,” Bulletin of Environmental Contamination and Toxicology, vol. 62, no. 6, pp. 664–670, 1999. View at Publisher · View at Google Scholar · View at Scopus
  300. Y. W. Chung, A. A. Nunez, and L. G. Clemens, “Effects of neonatal polychlorinated biphenyl exposure on female sexual behavior,” Physiology and Behavior, vol. 74, no. 3, pp. 363–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  301. H. B. Patisaul, J. R. Luskin, and M. E. Wilson, “A soy supplement and tamoxifen inhibit sexual behavior in female rats,” Hormones and Behavior, vol. 45, no. 4, pp. 270–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  302. P. L. Whitten, C. Lewis, E. Russell, and F. Naftolin, “Phytoestrogen influences on the development of behavior and gonadotropin function,” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 1, pp. 82–86, 1995. View at Scopus
  303. T. Kouki, M. Okamoto, S. Wada, M. Kishitake, and K. Yamanouchi, “Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats,” Brain Research Bulletin, vol. 64, no. 5, pp. 449–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  304. A. C. Gore, “Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems,” Frontiers in Neuroendocrinology, vol. 29, no. 3, pp. 358–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. “Report (in Dutch) on the selection of genes for measuring the effects of pollutants on gene expression,” http://www.milieu-en-gezondheid.be/rapporten/STP%20MG%20-%20Vraagbaak%20Genexpressie_DEF.pdf.
  306. E. R. Levin, “Integration of the extranuclear and nuclear actions of estrogen,” Molecular Endocrinology, vol. 19, no. 8, pp. 1951–1959, 2005. View at Publisher · View at Google Scholar · View at Scopus
  307. A. Nadal, A. B. Ropero, O. Laribi, M. Maillet, E. Fuentes, and B. Soria, “Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor α and estrogen receptor β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11603–11608, 2000. View at Scopus
  308. G. G. J. M. Kuiper, B. Carlsson, K. Grandien et al., “Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors and α and β,” Endocrinology, vol. 138, no. 3, pp. 863–870, 1997. View at Publisher · View at Google Scholar · View at Scopus
  309. P. F. Pilch and M. P. Czech, “Hormone binding alters the conformation of the insulin receptor,” Science, vol. 210, no. 4474, pp. 1152–1153, 1980. View at Scopus
  310. L. A. Luck, J. L. Barse, A. M. Luck, and C. H. Peck, “Conformational changes in the human estrogen receptor observed by 19F NMR,” Biochemical and Biophysical Research Communications, vol. 270, no. 3, pp. 988–991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  311. G. F. Allan, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley, “Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 24, pp. 11750–11754, 1992. View at Publisher · View at Google Scholar · View at Scopus
  312. J. A. Schwartz and D. F. Skafar, “Ligand-mediated modulation of estrogen receptor conformation by estradiol analogs,” Biochemistry, vol. 32, no. 38, pp. 10109–10115, 1993. View at Publisher · View at Google Scholar · View at Scopus
  313. R. V. Weatherman, C. Y. Chang, N. J. Clegg et al., “Ligand-selective interactions of ER detected in living cells by fluorescence resonance energy transfer,” Molecular Endocrinology, vol. 16, no. 3, pp. 487–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  314. V. Vijayanathan, N. J. Greenfield, T. J. Thomas et al., “Effects of estradiol and 4-hydroxytamoxifen on the conformation, thermal stability, and DNA recognition of estrogen receptor β,” Biochemistry and Cell Biology, vol. 85, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  315. H. Watanabe, A. Suzuki, M. Kobayashi, D. B. Lubahn, H. Handa, and T. Iguchi, “Similarities and differences in uterine gene expression patterns caused by treatment with physiological and non-physiological estrogens,” Journal of Molecular Endocrinology, vol. 31, no. 3, pp. 487–497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  316. T. Adachi, K. B. Koh, H. Tainaka et al., “Toxicogenomic difference between diethylstilbestrol and 17β-estradiol in mouse testicular gene expression by neonatal exposure,” Molecular Reproduction and Development, vol. 67, no. 1, pp. 19–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  317. F. Wu, S. Khan, Q. Wu, R. Barhoumi, R. Burghardt, and S. Safe, “Ligand structure-dependent activation of estrogen receptor α/Sp by estrogens and xenoestrogens,” Journal of Steroid Biochemistry and Molecular Biology, vol. 110, no. 1-2, pp. 104–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. H. B. Patisaul, P. L. Whitten, and L. J. Young, “Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17β-estradiol and the phytoestrogen, coumestrol,” Molecular Brain Research, vol. 67, no. 1, pp. 165–171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  319. C. S. Watson, R. A. Alyea, Y. J. Jeng, and M. Y. Kochukov, “Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues,” Molecular and Cellular Endocrinology, vol. 274, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  320. J. A. McLachlan, K. S. Korach, R. R. Newbold, and G. H. Degen, “Diethylstilbestrol and other estrogens in the environment,” Fundamental and Applied Toxicology, vol. 4, no. 5, pp. 686–691, 1984. View at Scopus
  321. A. L. Wozniak, N. N. Bulayeva, and C. S. Watson, “Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-α-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells,” Environmental Health Perspectives, vol. 113, no. 4, pp. 431–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  322. P. Thomas and J. Dong, “Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption,” Journal of Steroid Biochemistry and Molecular Biology, vol. 102, no. 1–5, pp. 175–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  323. E. Silva, A. Kabil, and A. Kortenkamp, “Cross-talk between non-genomic and genomic signalling pathways—distinct effect profiles of environmental estrogens,” Toxicology and Applied Pharmacology, vol. 245, no. 2, pp. 160–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  324. P. Ciana, F. Scarlatti, A. Biserni et al., “The dynamics of estrogen receptor activity,” Maturitas, vol. 54, no. 4, pp. 315–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  325. A. Nadal, M. Díaz, and M. A. Valverde, “The estrogen trinity: membrane, cytosolic, and nuclear effects,” News in Physiological Sciences, vol. 16, no. 6, pp. 251–255, 2001. View at Scopus
  326. N. N. Bulayeva and C. S. Watson, “Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways,” Environmental Health Perspectives, vol. 112, no. 15, pp. 1481–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  327. X. Li, S. Zhang, and S. Safe, “Activation of kinase pathways in MCF-7 cells by 17β-estradiol and structurally diverse estrogenic compounds,” Journal of Steroid Biochemistry and Molecular Biology, vol. 98, no. 2-3, pp. 122–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  328. S. Takayanagi, T. Tokunaga, X. Liu, H. Okada, A. Matsushima, and Y. Shimohigashi, “Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity,” Toxicology Letters, vol. 167, no. 2, pp. 95–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  329. F. Ohtake, K. I. Takeyama, T. Matsumoto et al., “Modulation of oestrogen receptor signalling by association with the activated dioxin receptor,” Nature, vol. 423, no. 6939, pp. 545–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  330. T. Ohura, M. Morita, R. Kuruto-Niwa, T. Amagai, H. Sakakibara, and K. Shimoi, “Differential action of chlorinated polycyclic aromatic hydrocarbons on aryl hydrocarbon receptor-mediated signaling in breast cancer cells,” Environmental Toxicology, vol. 25, no. 2, pp. 180–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  331. S. M. Ho, W. Y. Tang, J. Belmonte de Frausto, and G. S. Prins, “Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4,” Cancer Research, vol. 66, no. 11, pp. 5624–5632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  332. M. D. Anway, A. S. Cupp, N. Uzumcu, and M. K. Skinner, “Toxicology: epigenetic transgenerational actions of endocrine disruptors and male fertility,” Science, vol. 308, no. 5727, pp. 1466–1469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  333. M. D. Anway and M. K. Skinner, “Epigenetic transgenerational actions of endocrine disruptors,” Endocrinology, vol. 147, no. 6, pp. S43–S49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  334. D. Roy and J. G. Liehr, “Estrogen, DNA damage and mutations,” Mutation Research, vol. 424, no. 1-2, pp. 107–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  335. A. Kabil, E. Silva, and A. Kortenkamp, “Estrogens and genomic instability in human breast cancer cells—involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals,” Carcinogenesis, vol. 29, no. 10, pp. 1862–1868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  336. A. C. Gore, “Neuroendocrine targets of endocrine disruptors,” Hormones, vol. 9, no. 1, pp. 16–27, 2010. View at Scopus
  337. J. A. Staessen, T. Nawrot, E. D. Hond et al., “Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers,” The Lancet, vol. 357, no. 9269, pp. 1660–1669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  338. I. Ceccarelli, D. Della Seta, P. Fiorenzani, F. Farabollini, and A. M. Aloisi, “Estrogenic chemicals at puberty change ERα in the hypothalamus of male and female rats,” Neurotoxicology and Teratology, vol. 29, no. 1, pp. 108–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  339. B. C. Wadas, C. A. Hartshorn, E. R. Aurand et al., “Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotrophin-releasing hormone neuronal system of the rabbit,” Journal of Neuroendocrinology, vol. 22, no. 6, pp. 518–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  340. A. C. Holloway, D. A. Anger, D. J. Crankshaw, M. Wu, and W. G. Foster, “Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues,” Journal of Applied Toxicology, vol. 28, no. 3, pp. 260–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  341. M. H. A. Kester, S. Bulduk, H. van Toor et al., “Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1142–1150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  342. W. T. Collins Jr. and C. C. Capen, “Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls,” American Journal of Pathology, vol. 99, no. 1, pp. 125–141, 1980. View at Scopus
  343. A. P. J. M. van Birgelen, E. A. Smit, I. M. Kampen et al., “Subchronic effects of 2,3,7,8-TCDD or PCBs on thyroid hormone metabolism: use in risk assessment,” European Journal of Pharmacology, vol. 293, no. 1, pp. 77–85, 1995. View at Scopus
  344. K. R. Chauhan, P. R. S. Kodavanti, and J. D. McKinney, “Assessing the role of orthoh-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein,” Toxicology and Applied Pharmacology, vol. 162, no. 1, pp. 10–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  345. M. C. Lans, E. Klasson-Wehler, M. Willemsen, E. Meussen, S. Safe, and A. Brouwer, “Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin,” Chemico-Biological Interactions, vol. 88, no. 1, pp. 7–21, 1993. View at Publisher · View at Google Scholar · View at Scopus
  346. J. M. Pascussi, S. Gerbal-Chaloin, C. Duret, M. Daujat-Chavanieu, M. J. Vilarem, and P. Maurel, “The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 1–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  347. L. B. Moore, J. M. Maglich, D. D. McKee et al., “Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors,” Molecular Endocrinology, vol. 16, no. 5, pp. 977–986, 2002. View at Publisher · View at Google Scholar · View at Scopus
  348. E. Castano and R. D. Flores-Saaib, “A mathematical approach for the transactivation of hERalpha,” Philosophical Transactions A, Mathematical, Physical, and Engineering Sciences, vol. 366, no. 1874, pp. 2253–2263, 2008. View at Publisher · View at Google Scholar
  349. E. L. Gregoraszczuk, A. Grochowalski, R. Chrzaszcz, and M. Wegiel, “Congener-specific accumulation of polychlorinated biphenyls in ovarian follicular wall follows repeated exposure to PCB 126 and PCB 153. Comparison of tissue levels of PCB and biological changes,” Chemosphere, vol. 50, no. 4, pp. 481–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  350. F. Endo, T. K. Monsees, H. Akaza, W. B. Schill, and S. Pflieger-Bruss, “Effects of single non-ortho, mono-ortho, and di-ortho chlorinated biphenyls on cell functions and proliferation of the human prostatic carcinoma cell line, LNCaP,” Reproductive Toxicology, vol. 17, no. 2, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  351. B. Eskenazi, M. Warner, A. R. Marks et al., “Serum dioxin concentrations and age at menopause,” Environmental Health Perspectives, vol. 113, no. 7, pp. 858–862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  352. H. Lilienthal, A. Hack, A. Roth-Härer, S. W. Grande, and C. E. Talsness, “Effects of developmental exposure to 2,2,4,4, 5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats,” Environmental Health Perspectives, vol. 114, no. 2, pp. 194–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  353. L. Li, M. E. Andersen, S. Heber, and Q. Zhang, “Non-monotonic dose-response relationship in steroid hormone receptor-mediated gene expression,” Journal of Molecular Endocrinology, vol. 38, no. 5-6, pp. 569–585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  354. J. G. Lemmen, R. J. Arends, P. T. van der Saag, and B. van der Burg, “In vivo imaging of activated estrogen receptors in utero by estrogens and bisphenol A,” Environmental Health Perspectives, vol. 112, no. 15, pp. 1544–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  355. W. V. Welshons, S. C. Nagel, and F. S. vom Saal, “Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure,” Endocrinology, vol. 147, no. 6, pp. S56–S69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  356. I. Quesada, E. Fuentes, M. C. Viso-León, B. Soria, C. Ripoll, and A. Nadal, “Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB,” FASEB Journal, vol. 16, no. 12, pp. 1671–1673, 2002. View at Scopus
  357. D. E. Walsh, P. Dockery, and C. M. Doolan, “Estrogen receptor independent rapid non-genomic effects of environmental estrogens on [Ca2+]i in human breast cancer cells,” Molecular and Cellular Endocrinology, vol. 230, no. 1-2, pp. 23–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  358. A. Zsarnovszky, H. H. Le, H. S. Wang, and S. M. Belcher, “Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A,” Endocrinology, vol. 146, no. 12, pp. 5388–5396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  359. Y. B. Wetherill, C. E. Petre, K. R. Monk, A. Puga, and K. E. Knudsen, “The xenoestrogen bisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells,” Molecular Cancer Therapeutics, vol. 1, no. 7, pp. 515–524, 2002. View at Scopus
  360. A. J. M. Andrade, S. W. Grande, C. E. Talsness, K. Grote, and I. Chahoud, “A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): non-monotonic dose-response and low dose effects on rat brain aromatase activity,” Toxicology, vol. 227, no. 3, pp. 185–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  361. J. E. Bodwell, L. A. Kingsley, and J. W. Hamilton, “Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain,” Chemical Research in Toxicology, vol. 17, no. 8, pp. 1064–1076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  362. National Academy of Science, Hormonally Active Agents in the Environment, National Academy press, Washington, DC, USA, 1999.
  363. W. Dhooge, E. Den Hond, G. Koppen et al., “Internal exposure to pollutants and sex hormone levels in Flemish male adolescents in a cross-sectional study: associations and dose—response relationships,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 1, pp. 106–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  364. E. Den Hond, W. Dhooge, L. Bruckers et al., “Internal exposure to pollutants and sexual maturation in Flemish adolescents,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 3, pp. 224–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  365. I. Colón, D. Caro, C. J. Bourdony, and O. Rosario, “Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development,” Environmental Health Perspectives, vol. 108, no. 9, pp. 895–900, 2000. View at Scopus
  366. A. D. Correia, S. Freitas, M. Scholze et al., “Mixtures of estrogenic chemicals enhance vitellogenic response in sea bass,” Environmental Health Perspectives, vol. 115, pp. 115–121, 2007. View at Scopus
  367. H. Zhang, F. X. Kong, Y. Yu, X. L. Shi, M. Zhang, and H. E. Tian, “Assessing the combination effects of environmental estrogens in fish,” Ecotoxicology, vol. 19, no. 8, pp. 1476–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  368. M. Y. Kochukov, Y. J. Jeng, and C. S. Watson, “Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes,” Environmental Health Perspectives, vol. 117, no. 5, pp. 723–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  369. Y. J. Jeng and C. S. Watson, “Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells,” Environmental Health Perspectives, vol. 119, no. 1, pp. 104–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  370. A. Kuhl and M. Brouwer, “Antiestrogens inhibit xenoestrogen-induced brain aromatase activity but do not prevent xenoestrogen-induced feminization in Japanese Medaka (Oryzias latipes),” Environmental Health Perspectives, vol. 114, no. 4, pp. 500–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  371. “American Chemical Society,” (statement no 3, 2009, http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_SUPERARTICLE&node_id=2226&use_sec=false&sec_url_var=region1&_uuid=90d93c48-57e0-4088-8fcd-d428a78a5f38).