About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2012 (2012), Article ID 810501, 11 pages
http://dx.doi.org/10.1155/2012/810501
Review Article

Human Biological Monitoring of Diisononyl Phthalate and Diisodecyl Phthalate: A Review

National Biomonitoring Section, Chemicals Surveillance Bureau, Health Canada, 269, Laurier Avenue, Ottawa, ON, Canada K1A 0K9

Received 1 September 2011; Accepted 17 October 2011

Academic Editor: David O. Carpenter

Copyright © 2012 Gurusankar Saravanabhavan and Janine Murray. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Morse, “Phthalates face murky future,” Chemical and Engineering News, vol. 89, no. 22, pp. 28–31, 2011.
  2. Cosmetic Ingredient Review Expert Panel, “Annual review of cosmetic ingredient safety assessment—2002-2003,” International Journal of Toxicology, vol. 24, no. 1-2, supplement 1, pp. 1–102, 2005.
  3. D. Koniecki, R. Wang, R. P. Moody, and J. Zhu, “Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure,” Environmental Research, vol. 111, no. 3, pp. 329–336, 2011. View at Publisher · View at Google Scholar
  4. European Council for Plasticisers and Intermediates, “An information resource on the platiciser diisodecyl phthalate,” http://www.didp-facts.com/.
  5. R. U. Halden, “Plastics and health risks,” Annual Review of Public Health, vol. 31, pp. 179–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Calafat, L.-Y. Wong, M. J. Silva et al., “Selecting adequate exposure biomarkers of diisononyl and diisodecyl phthalates: data from the 2005-2006 national health and nutrition examination survey,” Environmental Health Perspectives, vol. 119, no. 1, pp. 50–55, 2011. View at Publisher · View at Google Scholar
  7. B. C. Blount, M. J. Silva, S. P. Caudill et al., “Levels of seven urinary phthalate metabolites in a human reference population,” Environmental Health Perspectives, vol. 108, no. 10, pp. 979–982, 2000. View at Scopus
  8. M. Wittassek, G. A. Wiesmnller, H. M. Koch et al., “Internal phthalate exposure over the last two decades—a retrospective human biomonitoring study,” International Journal of Hygiene and Environmental Health, vol. 210, no. 3-4, pp. 319–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Koch, M. Wittassek, T. Brüning, J. Angerer, and U. Heudorf, “Exposure to phthalates in 5-6 years old primary school starters in Germany—a human biomonitoring study and a cumulative risk assessment,” International Journal of Hygiene and Environmental Health, vol. 214, no. 3, pp. 188–195, 2011. View at Publisher · View at Google Scholar
  10. K. Becker, T. Güen, M. Seiwert et al., “GerES IV: phthalate metabolites and bisphenol A in urine of German children,” International Journal of Hygiene and Environmental Health, vol. 212, no. 6, pp. 685–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Centre for Disease Control and Prevention, Fourth National Report on Human Exposure to Environmental Chemicals, Division of Laboratory Sciences, National Centre for Environmental Health, Atlanta, Ga, USA, 2009.
  12. M. J. Silva, D. B. Barr, J. A. Reidy et al., “Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000,” Environmental Health Perspectives, vol. 112, no. 3, pp. 331–338, 2004. View at Scopus
  13. K. Kato, M. J. Silva, C. Wolf, L. E. Gray, L. L. Needham, and A. M. Calafat, “Urinary metabolites of diisodecyl phthalate in rats,” Toxicology, vol. 236, no. 1-2, pp. 114–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Silva, K. Kato, C. Wolf et al., “Urinary biomarkers of di-isononyl phthalate in rats,” Toxicology, vol. 223, no. 1-2, pp. 101–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Babich and C. A. Osterhout, Toxicity Review of Diisononyl Phthalate (DINP), United States Consumer Product Safety Commission, Bethesda, Md, USA, 2010.
  16. European Chemicals Bureau, Risk Assessment Report on 1,2-Benezedicarboxylic Acid, Di-C8-10 Bracnched Alkyl Esters, C9-Rich, and Di-Isononyl Phthalate (DINP), Institute for Health and Consumer Protection, European Union, 2003.
  17. European Council for Plasticisers and Intermediates, “Technical properties of DINP,” http://www.dinp-facts.com/default.aspx?page=43.
  18. S. C. Rastogi, “Gas chromatographic analysis of phthalate esters in plastic toys,” Chromatographia, vol. 47, no. 11-12, pp. 724–726, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. H. M. Koch, J. Müller, and J. Angerer, “Determination of secondary, oxidised di-iso-nonylphthalate (DINP) metabolites in human urine representative for the exposure to commercial DINP plasticizers,” Journal of Chromatography B, vol. 847, no. 2, pp. 114–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. European Chemicals Bureau, Risk Assessment Report on 1,2-Benezedicarboxylic Acid, Di-C9-11 Bracnched Alkyl Esters, C10-Rich, and Di-“Isodecyl” Phthalate (DIDP), Institute for Health and Consumer Protection, European Union, 2003.
  21. Exxon Biomedical Sciences, “Water Solubility of DIDP,” Report 199638, Exxon Mobil, NJ, USA, 1996.
  22. M. J. Silva, J. A. Reidy, J. L. Preau, L. L. Needham, and A. M. Calafat, “Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1158–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. W. A. C. Anderson, L. Castle, S. Hird, J. Jeffery, and M. J. Scotter, “A twenty-volunteer study using deuterium labelling to determine the kinetics and fractional excretion of primary and secondary urinary metabolites of di-2-ethylhexylphthalate and di-iso-nonylphthalate,” Food and Chemical Toxicology, vol. 49, no. 9, pp. 2022–2029, 2011. View at Publisher · View at Google Scholar
  24. R. H. McKee, M. El-Hawari, M. Stoltz, F. Pallas, and A. W. Lington, “Absorption, disposition and metabolism of di-isononyl phthalate (DINP) in F-344 rats,” Journal of Applied Toxicology, vol. 22, no. 5, pp. 293–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. M. Koch, H. M. Bolt, R. Preuss, and J. Angerer, “New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP,” Archives of Toxicology, vol. 79, no. 7, pp. 367–376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Silva, E. Samandar, J. L. Preau, L. L. Needham, and A. M. Calafat, “Urinary oxidative metabolites of di(2-ethylhexyl) phthalate in humans,” Toxicology, vol. 219, no. 1–3, pp. 22–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Koch and J. Angerer, “Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP,” International Journal of Hygiene and Environmental Health, vol. 210, no. 1, pp. 9–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. R. Graham, “Phthalate ester plasticizers—why and how they are used,” Environmental Health Perspectives, vol. 3, pp. 3–12, 1973. View at Scopus
  29. M. Wittassek, H. M. Koch, J. Angerer, and T. Brüning, “Assessing exposure to phthalates–the human biomonitoring approach,” Molecular Nutrition and Food Research, vol. 55, no. 1, pp. 7–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. L. Needham, A. M. Calafat, and D. B. Barr, “Uses and issues of biomonitoring,” International Journal of Hygiene and Environmental Health, vol. 210, no. 3-4, pp. 229–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Paustenbach and D. Galbraith, “Biomonitoring and biomarkers: exposure assessment will never be the same,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1143–1149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. M. Koch and A. M. Calafat, “Human body burdens of chemicals used in plastic manufacture,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1526, pp. 2063–2078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Esteban and A. Castaño, “Non-invasive matrices in human biomonitoring: a review,” Environment International, vol. 35, no. 2, pp. 438–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. B. Barr, R. Y. Wang, and L. L. Needham, “Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the National Children's Study,” Environmental Health Perspectives, vol. 113, no. 8, pp. 1083–1091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. L. Needham, D. G. Patterson, D. B. Barr, J. Grainger, and A. M. Calafat, “Uses of speciation techniques in biomonitoring for assessing human exposure to organic environmental chemicals,” Analytical and Bioanalytical Chemistry, vol. 381, no. 2, pp. 397–404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Calafat and L. L. Needham, “Factors affecting the evaluation of biomonitoring data for human exposure assessment,” International Journal of Andrology, vol. 31, no. 2, pp. 139–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Calafat, X. Ye, M. J. Silva et al., “Human exposure assessment to environmental chemicals using biomonitoring,” International Journal of Andrology, vol. 29, no. 1, pp. 166–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Lin, H. Y. Ku, P. H. Su et al., “Phthalate exposure in pregnant women and their children in central Taiwan,” Chemosphere, vol. 82, no. 7, pp. 947–955, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Frederiksen, L. Aksglaede, K. Sorensen, N. E. Skakkebaek, A. Juul, and A.-M. Andersson, “Urinary excretion of phthalate metabolites in 129 healthy Danish children and adolescents: estimation of daily phthalate intake,” Environmental Research, vol. 111, no. 5, pp. 656–663, 2011. View at Publisher · View at Google Scholar
  40. Y. Suzuki, M. Niwa, J. Yoshinaga et al., “Exposure assessment of phthalate esters in Japanese pregnant women by using urinary metabolite analysis,” Environmental Health and Preventive Medicine, vol. 14, no. 3, pp. 180–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Casas, M. F. Fernández, S. Llop et al., “Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children,” Environment International, vol. 37, no. 5, pp. 858–866, 2011. View at Publisher · View at Google Scholar
  42. H. Fromme, G. Bolte, H. M. Koch et al., “Occurrence and daily variation of phthalate metabolites in the urine of an adult population,” International Journal of Hygiene and Environmental Health, vol. 210, no. 1, pp. 21–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Health Canada, Report on Human Biomonitoring of Environmental Chemicals in Canada, Health Canada, Ottawa, ON, Canada, 2010.
  44. Health Canada, Risk Assessment on Diisononyl Phthalate in Vinyl Children's Products, Consumer Product Safety Bureau, Ottawa, ON, Canada, 1998.
  45. Rijksinstituut voor Volksgesondheid en Milieu (National Institute of Public Health and Environment) (RIVM), “Phthalate release from soft PVC baby toys. Report from Dutch Consensus Group,” RIVM report 613320 002, 1998.
  46. M. A. Babich, The Risk of Chronic Toxicity Associated with Exposure to Diisononyl Phthalate (DINP) in Children's Products, United States Consumer Product Safety Commission, Bethesda, Md, USA, 1998.
  47. M. A. Babich, S. B. Chen, M. A. Greene et al., “Risk assessment of oral exposure to diisononyl phthalate from children's products,” Regulatory Toxicology and Pharmacology, vol. 40, no. 2, pp. 151–167, 2004. View at Publisher · View at Google Scholar · View at Scopus