About this Journal Submit a Manuscript Table of Contents
Journal of Environmental and Public Health
Volume 2013 (2013), Article ID 973165, 7 pages
http://dx.doi.org/10.1155/2013/973165
Research Article

Study of the Bioremediation of Atrazine under Variable Carbon and Nitrogen Sources by Mixed Bacterial Consortium Isolated from Corn Field Soil in Fars Province of Iran

1Environmental Health Engineering Department, School of Health, Health Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
2Environmental Health Engineering Department, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
3Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Received 27 October 2012; Revised 1 January 2013; Accepted 5 February 2013

Academic Editor: Mohammad Mehdi Amin

Copyright © 2013 Mansooreh Dehghani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Van Leeuwen, D. Waltner-Toews, T. Abernathy, B. Smit, and M. Shoukri, “Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987–1991,” International Journal of Epidemiology, vol. 28, no. 5, pp. 836–840, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. USEPA, Drinking Water Regulations and Health Advisories, Lewis Publishers, Chelsea, Mich, USA, 1990.
  3. L. B. O. Dos Santos, G. Abate, and J. C. Masini, “Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE),” Talanta, vol. 62, no. 4, pp. 667–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Nasseri, M. Dehghani, S. Amin, K. Naddafi, and Z. Zamanian, “Fate of atrazine in the agricultural soil of corn fields in fars province of Iran,” Iranian Journal of Environmental Health Science and Engineering, vol. 6, no. 4, pp. 223–232, 2009. View at Scopus
  5. M. Dehghani, S. Nasseri, S. A. Amin, and Z. Zamanian, “Assessment of atrazine distribution in Shiraz soils, south of Iran,” Pakistan Journal of Biological Sciences, vol. 13, no. 2, pp. 66–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Dehghani, S. Nasseri, S. Amin et al., “Atrazine adsorption-desorption behavior in Darehasaluie Kavar corn field soil,” Iranian Journal of Environmental Health Science & Engineering, vol. 2, no. 4, pp. 221–228, 2005.
  7. E. K. Dzantor and A. S. Flesot, “Combination of land farming and biostimulation as a waste remediation practice,” 1995.
  8. M. Dehghani, S. Nasseri, S. Amin et al., “Isolation and identification of atrazine-degrading bacteria from corn field soil in Fars province of Iran,” Pakistan Journal of Biological Sciences, vol. 10, no. 1, pp. 84–89, 2007. View at Scopus
  9. R. T. Mandelbaum, L. P. Wackett, and D. L. Allan, “Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures,” Applied and Environmental Microbiology, vol. 59, no. 6, pp. 1695–1701, 1993. View at Scopus
  10. E. Topp, L. Tessier, and E. G. Gregorich, “Dairy manure incorporation stimulates rapid atrazine mineralization in an agricultural soil,” Canadian Journal of Soil Science, vol. 76, no. 3, pp. 403–409, 1996. View at Scopus
  11. S. Houot, E. Topp, A. Yassir, and G. Soulas, “Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils,” Soil Biology and Biochemistry, vol. 32, no. 5, pp. 615–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Topp, W. M. Mulbry, H. Zhu, S. M. Nour, and D. Cuppels, “Characterization of S-Triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils,” Applied and Environmental Microbiology, vol. 66, no. 8, pp. 3134–3141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Smith, S. Alvey, and D. E. Crowley, “Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil,” FEMS Microbiology Ecology, vol. 53, no. 2, pp. 265–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Vancou and L. V. Zwieter, “Atrazine degradation by encapsulated Rhodococcus erythropolis NI 86121,” Journal of Applied Microbiology, vol. 99, pp. 765–795, 2005.
  15. L. C. Strong, H. McTavish, M. J. Sadowsky, and L. P. Wackett, “Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase,” Environmental Microbiology, vol. 2, no. 1, pp. 91–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. K. H. Chung, K. S. Ro, and D. Roy, “Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment,” Water Research, vol. 30, no. 2, pp. 341–346, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. E. B. Ostrofsky, J. B. Robinson, S. J. Traina, and O. H. Tuovinen, “Effect of cyanuric acid amendment on atrazine mineralization in surface soils and detection of the s-triazine ring-cleavage gene trzD,” Soil Biology and Biochemistry, vol. 33, no. 11, pp. 1539–1545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. H. P. L. Willems, K. J. Lewis, J. S. Dyson, and F. J. Lewis, “Mineralization of 2,4-D and atrazine in the unsaturated zone of a sandy loam soil,” Soil Biology and Biochemistry, vol. 28, no. 8, pp. 989–996, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. G. B. Clausen, L. Larsen, K. Johnsen, J. Radnoti De Lipthay, and J. Aamand, “Quantification of the atrazine-degrading Pseudomonas sp. strain ADP in aquifer sediment by quantitative competitive polymerase chain reaction,” FEMS Microbiology Ecology, vol. 41, no. 3, pp. 221–229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Entry, “Influence of nitrogen on atrazine and 2, 4 dichlorophenoxyacetic acid mineralization in blackwater and redwater forested wetland soils,” Biology and Fertility of Soils, vol. 29, no. 4, pp. 348–353, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Bichat, G. K. Sims, and R. L. Mulvaney, “Microbial utilization of heterocyclic nitrogen from atrazine,” Soil Science Society of America Journal, vol. 63, no. 1, pp. 100–110, 1999. View at Scopus
  22. V. García-González, F. Govantes, L. J. Shaw, R. G. Burns, and E. Santero, “Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP,” Applied and Environmental Microbiology, vol. 69, no. 12, pp. 6987–6993, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Forouzangohar, G. Haghnia, A. Kocheki, and F. Tabatabaie Yazdi, “The effect of organic matter and soil texture on degradation of atrazine and metamitron,” Journal of Science, Agriculture and Natural Resources, vol. 9, no. 1, pp. 131–141, 2005 (Russian).
  24. C. Nacamulli, A. Bevivino, C. Dalmastri, S. Tabacchioni, and L. Chiarini, “Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7,” FEMS Microbiology Ecology, vol. 23, no. 3, pp. 183–193, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Brandon, A. A. Nasser, and F. T. Ronald, “Removal of atrazine contamination in soil and liquid systems using Bioaugmentation,” Pesticide Science, vol. 50, pp. 211–220, 1997.
  26. S. J. Goux, M. Ibanez, M. Van Hoorick, P. Debongnie, S. N. Agathos, and L. Pussemier, “Biodegradation of atrazine in sand sediments and in a sand-filter,” Applied Microbiology and Biotechnology, vol. 54, no. 4, pp. 589–596, 2000. View at Scopus
  27. G. W. Thomas, “Soil pH and soil acidity,” in Methods of Soil Analysis, L. D. Sparks, Ed., SSSA Book Series, pp. 457–490, 1996.
  28. W. N. Darrel and L. E. Nelson, “Total carbon, organic carbon, and organic matter,” in Methods of Soil Analysis, D. L. Sparks, Ed., SSSA Book Series 5, pp. 982–991, 1996.
  29. L. S. Sonon and A. P. Schwab, “Adsorption characteristics of atrazine and alachlor in Kansas soils,” Weed Science, vol. 43, no. 3, pp. 461–466, 1995. View at Scopus
  30. L. B. O. Dos Santos, G. Abate, and J. C. Masini, “Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE),” Talanta, vol. 62, no. 4, pp. 667–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Rousseaux, A. Hartmann, and G. Soulas, “Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils,” FEMS Microbiology Ecology, vol. 36, no. 2-3, pp. 211–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. D. A. Newcombe and D. E. Crowley, “Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria,” Applied Microbiology and Biotechnology, vol. 51, no. 6, pp. 877–882, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. L. E. Erickson and K. Hee Lee, “Degradation of atrazine and related s-triazines,” Critical Reviews in Environmental Control, vol. 19, no. 1, pp. 1–14, 1989. View at Scopus
  34. R. Abdelhafid, S. Houot, and E. Barriuso, “Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils,” Soil Biology and Biochemistry, vol. 32, no. 3, pp. 389–401, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Abdelhafid, S. Houot, and E. Barriuso, “How increasing availabilities of carbon and nitrogen affect atrazine behaviour in soils,” Biology and Fertility of Soils, vol. 30, no. 4, pp. 333–340, 2000. View at Scopus
  36. S. Alvey and D. E. Crowley, “Influence of organic amendments on biodegradation of atrazine as a nitrogen source,” Journal of Environmental Quality, vol. 24, no. 6, pp. 1156–1162, 1995. View at Scopus
  37. L. E. Sommers, C. M. Gilmour, R. E. Wildung, and S. M. Beck, “The effect of water pollution on decomposition processes in soils,” in Water Potential Relations in Soil Microbiology, J. E. Parr, Ed., Special Publication number 9, pp. 97–117, Soil Science Society of America, Madison, Wis, USA, 1981.