Abstract

We consider a new general integral operator, and we give sufficient conditions for the univalence of this integral operator in the open unit disk of the complex plane. Several consequences of the main results are also shown.

1. Introduction

Let π‘ˆ={π‘§βˆˆβ„‚βˆΆ|𝑧|<1} be the unit disk of the complex plane and let π’œ be the class of functions 𝑓 of the form 𝑓(𝑧)=𝑧+βˆžξ“π‘š=2π‘Žπ‘šπ‘§π‘š,(1.1) that are analytic in π‘ˆ and satisfy the usual normalization conditions 𝑓(0)=𝑓′(0)βˆ’1=0. We denote by 𝑆 the subclass of π’œ consisting of all univalent functions 𝑓 in π‘ˆ and consider the class 𝑃 of functions β„Ž that are analytic in π‘ˆ and that satisfy β„Ž(0)=1 and Reβ„Ž(𝑧)>0 for all π‘§βˆˆπ‘ˆ.

In the present paper we obtain sufficient conditions for the following general integral operator to be in the class 𝑆 (The univalent functions are of importance in geometric functions theory and may have some applications in fluid mechanics and physics): 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘ξƒ―π›½ξ€œ(𝑧)=𝑧0π‘’π‘›π›½βˆ’1𝑖=1π‘”ξ…žπ‘–(𝑒)𝛼𝑖𝑝𝑗=1β„Žπ‘—ξƒ°(𝑒)𝑑𝑒1/𝛽,(1.2) where 𝛼𝑖,𝛽 are complex numbers, 𝛽≠0, the functions 𝑔𝑖(𝑒)βˆˆπ’œ for all 𝑖=1,2,…,𝑛 and β„Žπ‘—(𝑒)βˆˆπ‘ƒ for all 𝑗=1,2,…,𝑝, where 𝑛,𝑝 are positive integers.

For proving our main results we need the following theorems.

Theorem 1.1 (see [1]). Let 𝛼 be a complex number, let Re𝛼>0; and let π‘“βˆˆπ’œ. If 1βˆ’|𝑧|2Re𝛼||||Reπ›Όπ‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||(𝑧)≀1,(1.3) for all π‘§βˆˆπ‘ˆ, then for any complex number 𝛽 with Re𝛽β‰₯Re𝛼, the function πΉπ›½ξ‚»π›½ξ€œ(𝑧)=𝑧0π‘’π›½βˆ’1π‘“ξ…žξ‚Ό(𝑒)𝑑𝑒1/𝛽(1.4) is in the class S.

Theorem 1.2 (see [2]). If the function 𝑔(𝑧) is regular in π‘ˆ and |𝑔(𝑧)|<1 in π‘ˆ, then for all πœ‰βˆˆπ‘ˆ and π‘§βˆˆπ‘ˆ, the following inequalities hold: ||||𝑔(πœ‰)βˆ’π‘”(𝑧)1βˆ’||||≀||||𝑔(𝑧)⋅𝑔(πœ‰)πœ‰βˆ’π‘§1βˆ’||||,||π‘”π‘§β‹…πœ‰(1.5)ξ…ž||≀||||(𝑧)1βˆ’π‘”(𝑧)21βˆ’|𝑧|2.(1.6) These are equalities if and only if 𝑔(𝑧)=πœ€(𝑧+𝑒)/(1+̄𝑒𝑧), where |πœ€|=1 and |𝑒|<1.

Remark 1.3 (see [2]). For 𝑧=0, from inequality (1.5) we have ||||𝑔(πœ‰)βˆ’π‘”(0)1βˆ’||||≀||πœ‰||,𝑔(0)⋅𝑔(πœ‰)(1.7) and hence, ||||≀||πœ‰||+||||𝑔(πœ‰)𝑔(0)||||β‹…||πœ‰||1+𝑔(0).(1.8) Writing 𝑔(0)=π‘Ž and letting πœ‰=𝑧, we get ||||≀𝑔(𝑧)|𝑧|+|π‘Ž|,1+|π‘Ž|β‹…|𝑧|(1.9) for all π‘§βˆˆπ‘ˆ.

2. Main Results

Theorem 2.1. Let 𝛿>0. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number, let 𝑀𝑖>0, and let π‘”π‘–βˆˆπ’œ. For 𝑗=1,2,…,𝑝, let 𝑁𝑗>0 and β„Žπ‘—βˆˆπ‘ƒ. If ||||π‘§π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||(𝑧)≀𝑀𝑖||||,βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),(2.1)π‘§β„Žξ…žπ‘—(𝑧)β„Žπ‘—||||(𝑧)≀𝑁𝑗,βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),(2.2)𝑛𝑖=1||𝛼𝑖||⋅𝑀𝑖+𝑝𝑗=1𝑁𝑗≀𝛿,(2.3) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.

Proof. Let us define the function: ξ€œπ‘“(𝑧)=𝑧0𝑛𝑖=1π‘”ξ…žπ‘–(𝑒)𝛼𝑖𝑝𝑗=1β„Žπ‘—(𝑒)𝑑𝑒,(2.4) with π‘”π‘–βˆˆπ’œ, for all 𝑖=1,2,…,𝑛 and β„Žπ‘—βˆˆπ‘ƒ, for all 𝑗=1,2,…,𝑝, and, thus, we obtain π‘“ξ…ž(𝑧)=𝑛𝑖=1π‘”ξ…žπ‘–(𝑧)𝛼𝑖𝑝𝑗=1β„Žπ‘—(𝑧).(2.5) The function 𝑓 is regular in π‘ˆ and 𝑓(0)=𝑓′(0)βˆ’1=0. We have π‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž=(𝑧)𝑛𝑖=1π›Όπ‘–π‘§π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–+(𝑧)𝑝𝑗=1π‘§β„Žξ…žπ‘—(𝑧)β„Žπ‘—(𝑧)(π‘§βˆˆπ‘ˆ).(2.6) From (2.1), (2.2), and (2.6) we obtain 1βˆ’|𝑧|2𝛿𝛿⋅||||π‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||≀(𝑧)1βˆ’|𝑧|2𝛿𝛿𝑛𝑖=1||𝛼𝑖||⋅𝑀𝑖+𝑝𝑗=1𝑁𝑗ξƒͺ(π‘§βˆˆπ‘ˆ),(2.7) and by (2.3), we have 1βˆ’|𝑧|2𝛿𝛿⋅||||π‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||(𝑧)≀1,βˆ€π‘§βˆˆπ‘ˆ.(2.8) Using (2.8), by Theorem 1.1, it results that the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.

Letting 𝑝=1 in Theorem 2.1, we have the following.

Corollary 2.2. Let 𝛿>0,  let 𝑁>0, and let β„Žβˆˆπ‘ƒ. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number, let 𝑀𝑖>0, and let π‘”π‘–βˆˆπ’œ. If ||||π‘§π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||(𝑧)≀𝑀𝑖||||,βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),π‘§β„Žξ…ž(𝑧)||||β„Ž(𝑧)≀𝑁(π‘§βˆˆπ‘ˆ)𝑛𝑖=1||𝛼𝑖||⋅𝑀𝑖+𝑁≀𝛿,(2.9) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐹𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Žξƒ―π›½ξ€œ(𝑧)=𝑧0π‘’π‘›π›½βˆ’1𝑖=1π‘”ξ…žπ‘–(𝑒)π›Όπ‘–ξƒ°β„Ž(𝑒)𝑑𝑒1/𝛽(2.10) is in the class 𝑆.

Letting 𝑛=1 in Theorem 2.1, we have the following.

Corollary 2.3. Let 𝛿>0, let 𝑀>0, let π‘”βˆˆπ’œ, and let 𝛼 be a complex number. For 𝑗=1,2,…,𝑝, let 𝑁𝑗>0 and let β„Žπ‘—βˆˆπ‘ƒ. If ||||π‘§π‘”ξ…žξ…ž(𝑧)π‘”ξ…ž||||||||(𝑧)≀𝑀(π‘§βˆˆπ‘ˆ),π‘§β„Žξ…žπ‘—(𝑧)β„Žπ‘—||||(𝑧)≀𝑁𝑗,βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),|𝛼|⋅𝑀+𝑝𝑗=1𝑁𝑗≀𝛿,(2.11) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐺𝛼,𝛽,𝑔,β„Ž1,…,β„Žπ‘ξƒ―π›½ξ€œ(𝑧)=𝑧0π‘’π›½βˆ’1𝑔′(𝑒)𝛼𝑝𝑗=1β„Žπ‘—ξƒ°(𝑒)𝑑𝑒1/𝛽(2.12) is in the class 𝑆.

For 𝑀1=𝑀2=β‹―=𝑀𝑛=𝑀 and 𝑁1=𝑁2=β‹―=𝑁𝑝=𝑁 in Theorem 2.1, we have the following.

Corollary 2.4. Let 𝛿>0, let 𝑀>0, and let 𝑁>0. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number and let π‘”π‘–βˆˆπ’œ. For 𝑗=1,2,…,𝑝, let β„Žπ‘—βˆˆπ‘ƒ. If ||||π‘§π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||||||(𝑧)≀𝑀,βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),π‘§β„Žξ…žπ‘—(𝑧)β„Žπ‘—||||𝑀(𝑧)≀𝑁,βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),𝑛𝑖=1||𝛼𝑖||+𝑝𝑁≀𝛿,(2.13) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.

Theorem 2.5. Let 𝛿>0. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number, let 𝑀𝑖>0, and let π‘”π‘–βˆˆπ’œ,𝑔𝑖(𝑧)=𝑧+π‘Žπ‘–2𝑧2+π‘Žπ‘–3𝑧3+β‹―. For 𝑗=1,2,…,𝑝, let 𝑁𝑗>0 and β„Žπ‘—βˆˆπ‘ƒ with β„Žξ…žπ‘—(0)=0, and βˆ‘π‘=𝑛𝑖=1π›Όπ‘–π‘Žπ‘–2∏/|𝑛𝑖=1𝛼𝑖|. If ||||π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||(𝑧)<𝑀𝑖||||β„Ž,βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),(2.14)ξ…žπ‘—(𝑧)β„Žπ‘—||||(𝑧)<π‘π‘—βˆ‘,βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),(2.15)𝑛𝑖=1||𝛼𝑖||𝑀𝑖+βˆ‘π‘π‘—=1𝑁𝑗||βˆπ‘›π‘–=1𝛼𝑖|||||||<1,(2.16)𝑛𝑖=1𝛼𝑖|||||≀1max|𝑧|<1ξ€Ίξ€·ξ€·1βˆ’|𝑧|2𝛿/𝛿⋅|𝑧|β‹…((|𝑧|+2|𝑐|)/(1+2|𝑐|β‹…|𝑧|)),(2.17) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.

Proof. We define the function: ξ€œπ‘“(𝑧)=𝑧0𝑛𝑖=1π‘”ξ…žπ‘–(𝑒)𝛼𝑖𝑝𝑗=1β„Žπ‘—(𝑒)𝑑𝑒(π‘§βˆˆπ‘ˆ),(2.18) with π‘”π‘–βˆˆπ’œ, for all 𝑖=1,2,…,𝑛 and β„Žπ‘—βˆˆπ‘ƒ, for all 𝑗=1,2,…,𝑝.
We consider the function 1𝐾(𝑧)=||βˆπ‘›π‘–=1𝛼𝑖||β‹…π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž(𝑧),βˆ€π‘§βˆˆπ‘ˆ.(2.19) We have π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž=(𝑧)𝑛𝑖=1π›Όπ‘–π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–+(𝑧)𝑝𝑗=1β„Žξ…žπ‘—(𝑧)β„Žπ‘—(𝑧)(π‘§βˆˆπ‘ˆ).(2.20) From (2.14), (2.15), and (2.20) we obtain 1||βˆπ‘›π‘–=1𝛼𝑖||β‹…||||π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||β‰€βˆ‘(𝑧)𝑛𝑖=1||𝛼𝑖||𝑀𝑖+βˆ‘π‘π‘—=1𝑁𝑗||βˆπ‘›π‘–=1𝛼𝑖||(π‘§βˆˆπ‘ˆ).(2.21) From (2.16), (2.19), and (2.21) we obtain |𝐾(𝑧)|<1 for all π‘§βˆˆπ‘ˆ.
We have βˆ‘πΎ(0)=2𝑛𝑖=1π›Όπ‘–π‘Žπ‘–2∏/|𝑛𝑖=1𝛼𝑖|=2𝑐, and, using Remark 1.3 we get ||||≀𝐾(𝑧)|𝑧|+2|𝑐|1+2|𝑐|β‹…|𝑧|(π‘§βˆˆπ‘ˆ).(2.22) From (2.19) and (2.22), we obtain 1βˆ’|𝑧|2𝛿𝛿⋅||||π‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||≀|||||(𝑧)𝑛𝑖=1𝛼𝑖|||||β‹…max|𝑧|<1ξ‚Έ1βˆ’|𝑧|2𝛿𝛿⋅|𝑧|β‹…|𝑧|+2|𝑐|ξ‚Ή1+2|𝑐|β‹…|𝑧|,(2.23) for all π‘§βˆˆπ‘ˆ.
From (2.17) and (2.23), we have 1βˆ’|𝑧|2𝛿𝛿⋅||||π‘§π‘“ξ…žξ…ž(𝑧)π‘“ξ…ž||||(𝑧)≀1(π‘§βˆˆπ‘ˆ).(2.24) So, applying Theorem 1.1, we obtain that the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.

Letting 𝑝=1 in Theorem 2.5, we have the following.

Corollary 2.6. Let 𝛿>0, let 𝑁>0, and let β„Žβˆˆπ‘ƒ with β„Žβ€²(0)=0. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number, 𝑀𝑖>0 and π‘”π‘–βˆˆπ’œ,𝑔𝑖(𝑧)=𝑧+π‘Žπ‘–2𝑧2+π‘Žπ‘–3𝑧3+β‹―, and βˆ‘π‘=𝑛𝑖=1π›Όπ‘–π‘Žπ‘–2∏/|𝑛𝑖=1𝛼𝑖|. If ||||π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||(𝑧)<𝑀𝑖||||β„Ž,βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),ξ…ž(𝑧)||||βˆ‘β„Ž(𝑧)<𝑁(π‘§βˆˆπ‘ˆ),𝑛𝑖=1||𝛼𝑖||𝑀𝑖+𝑁||βˆπ‘›π‘–=1𝛼𝑖|||||||<1,𝑛𝑖=1𝛼𝑖|||||≀1max|𝑧|<1ξ€Ίξ€·ξ€·1βˆ’|𝑧|2𝛿,/𝛿⋅|𝑧|β‹…((|𝑧|+2|𝑐|)/(1+2|𝑐|β‹…|𝑧|))(2.25) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐹𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Žξƒ―π›½ξ€œ(𝑧)=𝑧0π‘’π‘›π›½βˆ’1𝑖=1π‘”ξ…žπ‘–(𝑒)π›Όπ‘–ξƒ°β„Ž(𝑒)𝑑𝑒1/𝛽(2.26) is in the class 𝑆.

Letting 𝑛=1 in Theorem 2.5, we have the following.

Corollary 2.7. Let 𝛿>0, 𝑀>0,β€‰β€‰π‘”βˆˆπ’œ,𝑔(𝑧)=𝑧+π‘Ž2𝑧2+π‘Ž3𝑧3+β‹― and let 𝛼 be a complex number. For 𝑗=1,2,…,𝑝, let 𝑁𝑗>0 and β„Žπ‘—βˆˆπ‘ƒ with β„Žξ…žπ‘—(0)=0. If ||||π‘”ξ…žξ…ž(𝑧)π‘”ξ…ž||||||||β„Ž(𝑧)<𝑀(π‘§βˆˆπ‘ˆ),ξ…žπ‘—(𝑧)β„Žπ‘—||||(𝑧)<𝑁𝑗,βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),|𝛼|β‹…M+π‘βˆ‘π‘—=1𝑁𝑗1<|𝛼|≀max|𝑧|<1ξ€Ίξ€·ξ€·1βˆ’|𝑧|2𝛿||π‘Ž/𝛿⋅|𝑧|β‹…ξ€·ξ€·|𝑧|+22||ξ€Έ/ξ€·||π‘Ž1+22||,β‹…|𝑧|ξ€Έξ€Έξ€»(2.27) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐺𝛼,𝛽,𝑔,β„Ž1,…,β„Žπ‘ξƒ―π›½ξ€œ(𝑧)=𝑧0π‘’π›½βˆ’1𝑔′(𝑒)𝛼𝑝𝑗=1β„Žπ‘—ξƒ°(𝑒)𝑑𝑒1/𝛽(2.28) is in the class 𝑆.

For 𝑀1=𝑀2=β‹―=𝑀𝑛=𝑀 and 𝑁1=𝑁2=β‹―=𝑁𝑝=𝑁 in Theorem 2.5, we have the following.

Corollary 2.8. Let 𝛿>0, 𝑀>0, 𝑁>0. For 𝑖=1,2,…,𝑛, let 𝛼𝑖 be a complex number and π‘”π‘–βˆˆπ’œ,𝑔𝑖(𝑧)=𝑧+π‘Žπ‘–2𝑧2+π‘Žπ‘–3𝑧3+β‹―. For 𝑗=1,2,…,𝑝, let β„Žπ‘—βˆˆπ‘ƒ with β„Žξ…žπ‘—(0)=0, and βˆ‘π‘=𝑛𝑖=1π›Όπ‘–π‘Žπ‘–2∏/|𝑛𝑖=1𝛼𝑖|.
If ||||π‘”π‘–ξ…žξ…ž(𝑧)π‘”ξ…žπ‘–||||||||β„Ž(𝑧)<π‘€βˆ€π‘–=1,2,…,𝑛(π‘§βˆˆπ‘ˆ),ξ…žπ‘—(𝑧)β„Žπ‘—||||π‘€βˆ‘(𝑧)<π‘βˆ€π‘—=1,2,…,𝑝(π‘§βˆˆπ‘ˆ),𝑛𝑖=1||𝛼𝑖||+𝑝𝑁||βˆπ‘›π‘–=1𝛼𝑖|||||||<1,𝑛𝑖=1𝛼𝑖|||||≀1max|𝑧|<1ξ€Ίξ€·ξ€·1βˆ’|𝑧|2𝛿,/𝛿⋅|𝑧|β‹…((|𝑧|+2|𝑐|)/(1+2|𝑐|β‹…|𝑧|))(2.29) then for every complex number 𝛽 with Re𝛽β‰₯𝛿>0, the integral operator 𝐻𝛼1,…,𝛼𝑛,𝛽,𝑔1,…,𝑔𝑛,β„Ž1,…,β„Žπ‘(𝑧) given by (1.2) is in the class 𝑆.