Abstract

The essential aim of this paper is to introduce novel identities for q-Genocchi numbers and polynomials by using the method by T. Kim et al. (article in press). We show that these polynomials are related to p-adic analogue of Bernstein polynomials. Also, we derive relations between q-Genocchi and q-Bernoulli numbers.

1. Preliminaries

Imagine that 𝑝 be a fixed odd prime number. We now start with definition of the following notations. Let β„šπ‘ be the field 𝑝-adic rational numbers and let ℂ𝑝 be the completion of algebraic closure of β„šπ‘.

Thus, β„šπ‘=ξƒ―π‘₯=βˆžξ“π‘›=βˆ’π‘˜π‘Žπ‘›π‘π‘›βˆΆ0β‰€π‘Žπ‘›ξƒ°.<𝑝(1.1)

Then ℀𝑝 is integral domain, which is defined by ℀𝑝=ξƒ―π‘₯=βˆžξ“π‘›=0π‘Žπ‘›π‘π‘›βˆΆ0β‰€π‘Žπ‘›ξƒ°,<𝑝(1.2) or ℀𝑝=ξ€½π‘₯βˆˆβ„šπ‘βˆΆ|π‘₯|𝑝.≀1(1.3)

We assume that π‘žβˆˆβ„‚π‘ with |1βˆ’π‘ž|𝑝<1 as an indeterminate. The 𝑝-adic absolute value |β‹…|𝑝, is normally defined by |π‘₯|𝑝=π‘βˆ’π‘Ÿ,(1.4) where π‘₯=π‘π‘Ÿ(𝑠/𝑑) with (𝑝,𝑠)=(𝑝,𝑑)=(𝑠,𝑑)=1, and π‘Ÿβˆˆβ„š.

[π‘₯]π‘ž is a π‘ž-extension of π‘₯, which is defined by [π‘₯]π‘ž=1βˆ’π‘žπ‘₯,1βˆ’π‘ž(1.5) we note that limπ‘žβ†’1[π‘₯]π‘ž=π‘₯ (see [1–17]).

Throughout this paper, we use notation of β„•βˆ—βˆΆ=β„•βˆͺ{0}, where β„• denotes set of Natural numbers.

We say that 𝑓 is a uniformly differentiable function at a point π‘Žβˆˆβ„€π‘, if the difference quotient, 𝐹𝑓(π‘₯,𝑦)=𝑓(π‘₯)βˆ’π‘“(𝑦),π‘₯βˆ’π‘¦(1.6) has a limit π‘“ξ…ž(π‘Ž) as (π‘₯,𝑦)β†’(π‘Ž,π‘Ž), and we denote this by π‘“βˆˆπ‘ˆπ·(℀𝑝). Then, for π‘“βˆˆπ‘ˆπ·(℀𝑝), we can start with the following expression: 1ξ€Ίπ‘π‘ξ€»π‘žξ“0β‰€πœ‰<𝑝𝑁𝑓(πœ‰)π‘žπœ‰=0β‰€πœ‰<𝑝𝑁𝑓(πœ‰)πœ‡π‘žξ€·πœ‰+𝑝𝑁℀𝑝,(1.7) which represents a 𝑝-adic π‘ž-analogue of Riemann sums for 𝑓. The integral of 𝑓 on ℀𝑝 will be defined as the limit (π‘β†’βˆž) of these sums, when it exists. The 𝑝-adic π‘ž-integral of function π‘“βˆˆπ‘ˆπ·(℀𝑝) is defined by Kim in [7, 12] as πΌπ‘ž(ξ€œπ‘“)=℀𝑝𝑓(πœ‰)π‘‘πœ‡π‘ž(πœ‰)=limπ‘β†’βˆž1ξ€Ίπ‘π‘ξ€»π‘žπ‘π‘βˆ’1ξ“πœ‰=0𝑓(πœ‰)π‘žπœ‰.(1.8)

The bosonic integral is considered as a bosonic limit π‘žβ†’1, 𝐼1(𝑓)=limπ‘žβ†’1πΌπ‘ž(𝑓). Similarly, the fermionic 𝑝-adic integral on ℀𝑝 is introduced by Kim as follows: πΌβˆ’π‘ž(ξ€œπ‘“)=℀𝑝𝑓(πœ‰)π‘‘πœ‡βˆ’π‘ž(πœ‰)(1.9) (for more details, see [13–16]).

From (1.9), it is well-known equality that π‘žπΌβˆ’π‘žξ€·π‘“1ξ€Έ+πΌβˆ’π‘ž[2](𝑓)=π‘žπ‘“(0),(1.10) where 𝑓1(π‘₯)=𝑓(π‘₯+1) (for details, see [2, 3, 8, 9, 12, 13, 15–17]).

The π‘ž-Genocchi polynomials with wegiht 0 are introduced as 𝐺𝑛+1,π‘ž(π‘₯)=ξ€œπ‘›+1℀𝑝(π‘₯+πœ‰)π‘›π‘‘πœ‡βˆ’π‘ž(πœ‰).(1.11)

From (1.11), we have 𝐺𝑛,π‘ž(π‘₯)=𝑛𝑙=0βŽ›βŽœβŽœβŽπ‘›π‘™βŽžβŽŸβŽŸβŽ π‘₯π‘™ξ‚πΊπ‘›βˆ’π‘™,π‘ž,(1.12) where 𝐺𝑛,π‘žξ‚πΊ(0)∢=𝑛,π‘ž are called π‘ž-Genocchi numbers with weight 0. Then, π‘ž-Genocchi numbers are defined as 𝐺0,π‘žξ‚€ξ‚πΊ=0,π‘žπ‘žξ‚+1𝑛+𝐺𝑛,π‘ž=ξ‚»[2]π‘ž,if𝑛=1,0,if𝑛≠1,(1.13) with the usual convention about replacing (ξ‚πΊπ‘ž)𝑛 by 𝐺𝑛,π‘ž is used (for details, see [3]).

Let π‘ˆπ·(℀𝑝) be the space of continuous functions on ℀𝑝. For π‘“βˆˆπ‘ˆπ·(℀𝑝), 𝑝-adic analogue of Bernstein operator for 𝑓 is defined by 𝐡𝑛(𝑓,π‘₯)=π‘›ξ“π‘˜=0π‘“ξ‚€π‘˜π‘›ξ‚π΅π‘˜,𝑛(π‘₯)=π‘›ξ“π‘˜=0π‘“ξ‚€π‘˜π‘›ξ‚βŽ›βŽœβŽœβŽπ‘›π‘˜βŽžβŽŸβŽŸβŽ π‘₯π‘˜(1βˆ’π‘₯)π‘›βˆ’π‘˜,(1.14) where 𝑛,π‘˜βˆˆβ„•βˆ—. Here, π΅π‘˜,𝑛(π‘₯) is called 𝑝-adic Bernstein polynomials, which are defined by π΅π‘˜,π‘›βŽ›βŽœβŽœβŽπ‘›π‘˜βŽžβŽŸβŽŸβŽ π‘₯(π‘₯)=π‘˜(1βˆ’π‘₯)π‘›βˆ’π‘˜[],π‘₯∈0,1(1.15) (for details, see [1, 4, 5, 7]).

The π‘ž-Bernoulli polynomials and numbers with weight 0 are defined by Kim et al., respectively, 𝐡𝑛,π‘ž(π‘₯)=limπ‘›β†’βˆž1[𝑝𝑛]π‘žπ‘π‘›βˆ’1𝑦=0(π‘₯+𝑦)π‘›π‘žπ‘¦=ξ€œβ„€π‘(π‘₯+πœ‰)π‘›π‘‘πœ‡π‘žξ‚π΅(πœ‰),𝑛,π‘ž=ξ€œβ„€π‘πœ‰π‘›π‘‘πœ‡π‘ž(πœ‰)(1.16) (for more information, see [10]).

The author, by using derivative operator, will investigate some interesting identities on the π‘ž-Genocchi numbers and polynomials arising from their generating function. Also, the author derives some relations between π‘ž-Genocchi numbers and π‘ž-Bernoulli numbers by using Kim’s π‘ž-Volkenborn integral and fermionic 𝑝-adic π‘ž-integral on ℀𝑝.

2. Novel Properties of π‘ž-Genocchi Numbers and Polynomials with Weight 0

Let 𝑓(π‘₯)=𝑒𝑑(π‘₯+𝑦). Then, by using (1.10), we easily procure the following: ξ€œβ„€π‘π‘’π‘‘(π‘₯+πœ‰)π‘‘πœ‡βˆ’π‘ž[2](πœ‰)=π‘žπ‘žπ‘’π‘‘π‘’+1π‘₯𝑑.(2.1)

From the last equality, by (1.11), we get Araci, Acikgoz, and Qi’s π‘ž-Genocchi polynomials with weight 0 in [3] as follows: [2]π‘žπ‘‘π‘žπ‘’π‘‘π‘’+1π‘₯𝑑=βˆžξ“π‘›=0𝐺𝑛,π‘ž(𝑑π‘₯)𝑛,||||𝑛!logπ‘ž+𝑑<πœ‹.(2.2)

Here, we assume that π‘₯ is a fixed parameter. Let ξ‚πΉπ‘ž([2]π‘₯,𝑑)=π‘žπ‘žπ‘’π‘‘π‘’+1π‘₯𝑑=βˆžξ“π‘›=0𝐺𝑛,π‘ž(𝑑π‘₯)π‘›βˆ’1.𝑛!(2.3) Thus, by expression of (2.3), we can readily see the following: π‘žπ‘’π‘‘ξ‚πΉπ‘žξ‚πΉ(π‘₯,𝑑)+π‘ž[2](π‘₯,𝑑)=π‘žπ‘’π‘₯𝑑.(2.4)

Last from equality, taking derivative operator 𝐷 as 𝐷=𝑑/𝑑𝑑 on the both sides of (2.4), then, we easily see that π‘žπ‘’π‘‘(𝐷+𝐼)π‘˜ξ‚πΉπ‘ž(π‘₯,𝑑)+π·π‘˜ξ‚πΉπ‘ž[2](π‘₯,𝑑)=π‘žπ‘₯π‘˜π‘’π‘₯𝑑,(2.5) where π‘˜βˆˆβ„•βˆ— and 𝐼 is identity operator. By multiplying π‘’βˆ’π‘‘ on both sides of (2.5), we get π‘ž(𝐷+𝐼)π‘˜ξ‚πΉπ‘ž(π‘₯,𝑑)+π‘’βˆ’π‘‘π·π‘˜ξ‚πΉπ‘ž[2](π‘₯,𝑑)=π‘žπ‘₯π‘˜π‘’(π‘₯βˆ’1)𝑑.(2.6)

Let us take derivative operator π·π‘š(π‘šβˆˆβ„•) on the both sides of (2.6). Then, we get π‘žπ‘’π‘‘π·π‘š(𝐷+𝐼)π‘˜ξ‚πΉπ‘ž(π‘₯,𝑑)+π·π‘˜(π·βˆ’πΌ)π‘šξ‚πΉπ‘ž[2](π‘₯,𝑑)=π‘žπ‘₯π‘˜(π‘₯βˆ’1)π‘šπ‘’π‘₯𝑑.(2.7)

Let 𝐺[0] (not 𝐺(0)) be the constant term in a Laurent series of 𝐺(𝑑) in (2.3). Then, we get π‘˜ξ“π‘—=0βŽ›βŽœβŽœβŽπ‘˜π‘—βŽžβŽŸβŽŸβŽ ξ‚€π‘žπ‘’π‘‘π·π‘˜+π‘šβˆ’π‘—ξ‚πΉπ‘žξ‚[0]+(π‘₯,𝑑)π‘šξ“π‘—=0βŽ›βŽœβŽœβŽπ‘šπ‘—βŽžβŽŸβŽŸβŽ (βˆ’1)π‘—ξ‚€π·π‘˜+π‘šβˆ’π‘—ξ‚πΉπ‘žξ‚[0]=[2](π‘₯,𝑑)π‘žπ‘₯π‘˜(π‘₯βˆ’1)π‘š.(2.8)

By (2.3), we easily see ξ‚€π·π‘ξ‚πΉπ‘žξ‚[0]=𝐺(π‘₯,𝑑)𝑁+1,π‘ž(π‘₯),𝑒𝑁+1π‘‘π·π‘ξ‚πΉπ‘žξ‚[0]=𝐺(π‘₯,𝑑)𝑁+1,π‘ž(π‘₯).𝑁+1(2.9)

We see that the members of (2.11) are proportional to the Bernstein polynomials with the following theorem.

Theorem 2.1. For π‘˜,π‘šβˆˆβ„•, one has [2]π‘ž(βˆ’1)π‘šπ΅π‘˜,π‘š+π‘˜(π‘₯)ξ€·π‘˜π‘š+π‘˜ξ€Έ=max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1,π‘ž(π‘₯).(2.10)

Proof. By expressions of (2.8) and (2.9), we see that max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1,π‘ž[2](π‘₯)=π‘žπ‘₯π‘˜(π‘₯βˆ’1)π‘š.(2.11)
By applying basic operations to above equality, we can easily reach to the desired result.

As a special case, we derive the following.

Corollary 2.2. For π‘˜βˆˆβ„•, one has [2]π‘ž(βˆ’1)π‘˜π΅π‘˜,2π‘˜(π‘₯)ξ€·π‘˜2π‘˜ξ€Έ=[2]π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1,π‘žβŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ (π‘₯)+2π‘˜(π‘žβˆ’1)[(π‘˜βˆ’1)/2]𝑗=0ξ€·π‘˜2𝑗+1𝐺2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯).(2.12)

Proof. When π‘˜=π‘š into (2.10), we derive the following identity: (βˆ’1)π‘˜π΅π‘˜,2π‘˜ξ€·(π‘₯)=π‘˜2π‘˜ξ€Έ1+π‘žπ‘˜ξ“π‘—=0βŽ‘βŽ’βŽ’βŽ£π‘žβŽ›βŽœβŽœβŽπ‘˜π‘—βŽžβŽŸβŽŸβŽ +(βˆ’1)π‘—βŽ›βŽœβŽœβŽπ‘˜π‘—βŽžβŽŸβŽŸβŽ βŽ€βŽ₯βŽ₯βŽ¦ξ‚πΊ2π‘˜βˆ’π‘—+1,π‘ž(π‘₯)=βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ 2π‘˜βˆ’π‘—+12π‘˜[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1,π‘ž(+βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ π‘₯)2π‘˜π‘žβˆ’1π‘ž+1[(π‘˜βˆ’1)/2]𝑗=0ξ€·π‘˜2𝑗+1𝐺2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯).(2.13) Here, [π‘₯] is greatest integer ≀π‘₯. Then, we complete the proof of Theorem.

From (2.2), we note that 𝑑𝐺𝑑π‘₯𝑛,π‘žξ‚(π‘₯)=π‘›π‘›βˆ’1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊπ‘›βˆ’1𝑙,π‘žπ‘₯π‘›βˆ’1βˆ’π‘™ξ‚πΊ=π‘›π‘›βˆ’1,π‘ž(π‘₯).(2.14)

By (2.14) and (1.11), we easily see that ξ€œ10𝐺𝑛,π‘žξ‚πΊ(π‘₯)𝑑π‘₯=𝑛+1,π‘žξ‚πΊ(1)βˆ’π‘›+1,π‘ž[2]𝑛+1=βˆ’π‘žβˆ’1𝐺𝑛+1,π‘ž[2]𝑛+1=βˆ’π‘žβˆ’1ξ€œβ„€π‘πœ‰π‘›π‘‘πœ‡βˆ’π‘ž(πœ‰).(2.15)

Now, let us consider definition of integral from 0 to 1 in (2.11), then we have βˆ’[2]π‘žβˆ’1max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+2,π‘ž=[2]π‘˜+π‘šβˆ’π‘—+2π‘ž(βˆ’1)π‘š=[2]𝐡(π‘˜+1,π‘š+1)π‘ž(βˆ’1)π‘šΞ“(π‘˜+1)Ξ“(π‘š+1),Ξ“(π‘˜+π‘š+2)(2.16) where 𝐡(π‘˜+1,π‘š+1) is beta function which is defined by ξ€œπ΅(π‘˜+1,π‘š+1)=10π‘₯π‘˜(1βˆ’π‘₯)π‘š1𝑑π‘₯=ξ€·(π‘˜+π‘š+1)π‘šπ‘˜+π‘šξ€Έ,π‘˜>0,π‘š>0.(2.17)

As a result, we obtain the following theorem.

Theorem 2.3. For π‘š,π‘˜βˆˆβ„•, one has max{π‘˜,π‘š}𝑗=1π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+2,π‘žπ‘˜+π‘šβˆ’π‘—+2=π‘ž(βˆ’1)π‘š+1ξ€·(π‘˜+π‘š+1)π‘˜π‘˜+π‘šξ€Έβˆ’[2]π‘žξ‚πΊπ‘˜+π‘š+1π‘˜+π‘š+2,π‘ž.π‘˜+π‘š+2(2.18)

Proof. By taking integral from 0 to 1 in (2.11), we easily reach to desired result.

Substituting π‘š=π‘˜+1 into Theorem 2.1, we readily get π‘˜+1𝑗=1π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘—π‘˜+1𝐺2π‘˜βˆ’π‘—+32π‘˜βˆ’π‘—+3,π‘ž=π‘ž(βˆ’1)π‘˜(ξ€·2π‘˜+2)π‘˜2π‘˜+1ξ€Έβˆ’[2]π‘žξ‚πΊ2π‘˜+22π‘˜+3,π‘ž.2π‘˜+3(2.19)

By differentiating both sides of (2.11) with respect to 𝑑, we have the following: max{π‘˜,π‘š}𝑗=0⎧βŽͺ⎨βŽͺβŽ©π‘žβŽ›βŽœβŽœβŽπ‘˜π‘—βŽžβŽŸβŽŸβŽ +(βˆ’1)π‘—βŽ›βŽœβŽœβŽπ‘šπ‘—βŽžβŽŸβŽŸβŽ βŽ«βŽͺ⎬βŽͺβŽ­ξ‚πΊπ‘˜+π‘šβˆ’π‘—,π‘ž[2](π‘₯)=π‘žπ‘₯π‘˜βˆ’1(π‘₯βˆ’1)π‘šβˆ’1((π‘˜+π‘š)π‘₯βˆ’π‘˜).(2.20)

We now give interesting theorem for π‘ž-Genocchi numbers with weight 0 as follows.

Theorem 2.4. For π‘˜βˆˆβ„•, one has [2]π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+2,π‘ž2π‘˜βˆ’2𝑗+2+(π‘žβˆ’1)[(π‘˜βˆ’1)/2]𝑗=0ξ€·π‘˜2𝑗+1𝐺2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗+1,π‘ž=2π‘˜βˆ’2𝑗+1π‘ž(βˆ’1)π‘˜+1(ξ€·2π‘˜+1)π‘˜2π‘˜ξ€Έ.(2.21)

Proof. It is proved by using definition of integral on the both sides in the following equality, that is, π‘˜ξ“π‘—=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘˜π‘—ξ€Έξ‚»ξ€œ2π‘˜βˆ’π‘—+110𝐺2π‘˜βˆ’π‘—+1,π‘žξ‚Ό=[2](π‘₯)𝑑π‘₯π‘žξ‚»ξ€œ10π‘₯π‘˜(π‘₯βˆ’1)π‘˜ξ‚Ό.𝑑π‘₯(2.22) Last from equality, we discover the following: [2]π‘ž[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚†βˆ«2𝑗10𝐺2π‘˜βˆ’2𝑗+1,π‘žξ‚‡(π‘₯)𝑑π‘₯2π‘˜βˆ’2𝑗+1+(π‘žβˆ’1)[(π‘˜βˆ’1)/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚†βˆ«2𝑗+110𝐺2π‘˜βˆ’2𝑗,π‘žξ‚‡(π‘₯)𝑑π‘₯=[2]2π‘˜βˆ’2π‘—π‘ž(βˆ’1)π‘˜ξ‚»ξ€œ10π‘₯π‘˜(1βˆ’π‘₯)π‘˜ξ‚Ό.𝑑π‘₯(2.23) Then, taking integral from 0 to 1 both sides of last equality, we get βˆ’[2]π‘žβˆ’1[2]π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+2,π‘ž+[2]2π‘˜βˆ’2𝑗+2π‘žβˆ’1(1βˆ’π‘ž)[(π‘˜βˆ’1)/2]𝑗=0ξ€·π‘˜2𝑗+1𝐺2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗+1,π‘ž=[2]2π‘˜βˆ’2𝑗+1π‘ž(βˆ’1)π‘˜[2]𝐡(π‘˜+1,π‘˜+1)=π‘ž(βˆ’1)π‘˜ξ€·(2π‘˜+1)π‘˜2π‘˜ξ€Έ.(2.24)
Thus, we complete the proof of the theorem.

Theorem 2.5. For π‘˜βˆˆβ„•, one has [2]π‘ž[(π‘˜+1)/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)βˆ’[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗𝐺2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗,π‘ž[2](π‘₯)+(π‘žβˆ’1)π‘ž[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξƒ―ξ‚πΊ2𝑗+12π‘˜βˆ’2𝑗,π‘ž(π‘₯)[2]π‘ž+𝐺(2π‘˜βˆ’2𝑗)2π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)[2]2π‘žξƒ°(2π‘˜βˆ’2𝑗+1)=π‘₯π‘˜(π‘₯βˆ’1)π‘˜ξ€·[2]π‘žξ€Έ.π‘₯βˆ’π‘ž(2.25)

Proof. In view of (2.2) and (2.23), we discover the following applications: π‘˜+1𝑗=0βŽ‘βŽ’βŽ’βŽ£π‘žβŽ›βŽœβŽœβŽπ‘˜π‘—βŽžβŽŸβŽŸβŽ +(βˆ’1)π‘—βŽ›βŽœβŽœβŽπ‘—βŽžβŽŸβŽŸβŽ βŽ€βŽ₯βŽ₯βŽ¦ξ‚πΊπ‘˜+12π‘˜βˆ’π‘—+1,π‘ž(π‘₯)=[2]2π‘˜βˆ’π‘—+1π‘žξ‚πΊ2π‘˜+1,π‘ž(π‘₯)+2π‘˜+1[(π‘˜+1)/2]𝑗=1βŽ‘βŽ’βŽ’βŽ£π‘žβŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ +βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ +βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ€βŽ₯βŽ₯βŽ¦ξ‚πΊ2𝑗2𝑗2π‘—βˆ’12π‘˜βˆ’2𝑗+1,π‘ž(+2π‘˜βˆ’2𝑗+1π‘₯)[π‘˜/2]𝑗=0βŽ‘βŽ’βŽ’βŽ£π‘žβŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βˆ’βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βˆ’βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ€βŽ₯βŽ₯βŽ¦ξ‚πΊ2𝑗+12𝑗+12𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯)⎧βŽͺ⎨βŽͺ⎩2π‘˜βˆ’2𝑗=βˆ’[(π‘˜+1)/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯)+2π‘˜βˆ’2π‘—π‘žβˆ’11+π‘ž[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2𝑗+12π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)⎫βŽͺ⎬βŽͺ⎭+[2]2π‘˜βˆ’2𝑗+1π‘ž[(π‘˜+1)/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ Γ—ξ‚πΊ2𝑗2π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)+2π‘˜βˆ’2𝑗+1[(π‘˜+1)/2]𝑗=1βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘—βˆ’12π‘˜βˆ’2𝑗+1,π‘ž(π‘₯)βˆ’2π‘˜βˆ’2𝑗+1[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯)+2π‘˜βˆ’2𝑗(π‘žβˆ’1)[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2𝑗+12π‘˜βˆ’2𝑗,π‘ž(π‘₯)+2π‘˜βˆ’2π‘—π‘žβˆ’11+π‘ž[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ ξ‚πΊ2𝑗+12π‘˜βˆ’2𝑗+1,π‘ž(π‘₯).2π‘˜βˆ’2𝑗+1(2.26)
Thus, we give evidence of the theorem.

As π‘žβ†’1 into Theorem 2.5, it leads to the following interesting property.

Corollary 2.6. For π‘˜βˆˆβ„•, one has [(π‘˜+1)/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ πΊ2𝑗2π‘˜βˆ’2𝑗+1(π‘₯)+2π‘˜+1βˆ’2𝑗[π‘˜/2]𝑗=1βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ πΊ2π‘—βˆ’12π‘˜βˆ’2𝑗+1(π‘₯)βˆ’4π‘˜βˆ’4𝑗+2[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ πΊ2𝑗2π‘˜βˆ’2𝑗,π‘ž(π‘₯)4π‘˜βˆ’4𝑗=π‘₯π‘˜(π‘₯βˆ’1)π‘˜ξ‚€1π‘₯βˆ’2,(2.27) where 𝐺𝑛(π‘₯) is ordinary Genocchi polynomials, which is defined by the means of the following generating function [9]: βˆžξ“π‘›=0𝐺𝑛(𝑑π‘₯)𝑛=𝑛!2𝑑𝑒𝑑𝑒+1π‘₯𝑑,|𝑑|<πœ‹.(2.28)

3. Some Identities π‘ž-Genocchi Numbers and π‘ž-Bernoulli Numbers by Using Kim’s 𝑝-Adic π‘ž-Integrals on ℀𝑝

In this section, we consider π‘ž-Genocchi numbers and π‘ž-Bernoulli numbers by means of 𝑝-adic π‘ž-integral on ℀𝑝. Now, we start with the following theorem.

Theorem 3.1. For π‘š,π‘˜βˆˆβ„•, one has max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0ξ€·π‘™π‘˜+π‘šβˆ’π‘—+1𝐺𝑙+1π‘˜+π‘šβˆ’π‘—βˆ’π‘™+1,π‘žξ‚πΊπ‘™+1,π‘ž=[2]π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ‚πΊπ‘™+π‘˜+1,π‘žπ‘™+π‘˜+1.(3.1)

Proof. For π‘š,π‘˜βˆˆβ„•, then by (2.11), 𝐼1=[2]π‘žξ€œβ„€π‘π‘₯π‘˜(π‘₯βˆ’1)π‘šπ‘‘πœ‡βˆ’π‘ž[2](π‘₯)=π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ€œβ„€π‘π‘₯𝑙+π‘˜π‘‘πœ‡βˆ’π‘ž=[2](π‘₯)π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ‚πΊπ‘™+π‘˜+1,π‘ž.𝑙+π‘˜+1(3.2) On the other hand, the right hand side of (2.11), 𝐼2=max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—βˆ’π‘™+1,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡βˆ’π‘ž=(π‘₯)max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0ξ€·π‘™π‘˜+π‘šβˆ’π‘—+1𝐺𝑙+1π‘˜+π‘šβˆ’π‘—βˆ’π‘™+1,π‘žξ‚πΊπ‘™+1,π‘ž.(3.3) Combining 𝐼1 and 𝐼2, we arrive to the proof of the theorem.

Theorem 3.2. For π‘˜βˆˆβ„•, one has π‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξƒ―[2]π‘žξ‚πΊπ‘˜+𝑙+2,π‘žξ‚πΊπ‘˜+𝑙+2βˆ’π‘žπ‘˜+𝑙+1,π‘žξƒ°=[2]π‘˜+𝑙+1π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2𝑗+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚πΊπ‘™+1,π‘ž+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€Έ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2𝑗+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚πΊπ‘™+1,π‘ž+π‘žβˆ’11+π‘ž[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ π‘‡2𝑗+1π‘žπ‘˜,𝑗,(3.4) here π‘‡π‘žπ‘˜,𝑗=[2]π‘žβˆ‘2π‘˜βˆ’2𝑗𝑙=0(𝑙2π‘˜βˆ’2𝑗𝐺/(2π‘˜βˆ’2𝑗))(𝑙+1,π‘žξ‚πΊ2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žβˆ‘/(𝑙+1))+2π‘˜βˆ’2𝑗+1𝑙=0(𝑙2π‘˜βˆ’2𝑗+1𝐺/(2π‘˜βˆ’2𝑗+1))(𝑙+1,π‘žξ‚πΊ2π‘˜βˆ’2π‘—βˆ’π‘™+1,π‘ž/(𝑙+1)).

Proof. Let us take fermionic 𝑝-adic π‘ž-inetgral on ℀𝑝 left-hand side of Theorem 2.5, we get 𝐼3=ξ€œβ„€π‘π‘₯π‘˜(π‘₯βˆ’1)π‘˜ξ€·[2]π‘žξ€Έπ‘₯βˆ’π‘žπ‘‘πœ‡βˆ’π‘ž(=[2]π‘₯)π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ€œβ„€π‘π‘₯π‘˜+𝑙+1π‘‘πœ‡βˆ’π‘ž(π‘₯)βˆ’π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ€œβ„€π‘π‘₯π‘˜+π‘™π‘‘πœ‡βˆ’π‘ž=[2](π‘₯)π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚πΊπ‘˜+𝑙+2,π‘žπ‘˜+𝑙+2βˆ’π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚πΊπ‘˜+𝑙+1,π‘ž.π‘˜+𝑙+1(3.5) In other word, we consider the right-hand side of Theorem 2.5 as follows: 𝐼4=[2]π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡βˆ’π‘ž+(π‘₯)[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€Έ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡βˆ’π‘ž(+π‘₯)[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ§βŽͺβŽͺ⎨βŽͺβŽͺ⎩2𝑗+1(π‘žβˆ’1)2π‘˜βˆ’2π‘—βˆ‘π‘—=0𝑙2π‘˜βˆ’2π‘—βˆ’π‘™ξ€Έξ‚πΊ2π‘˜βˆ’2𝑗2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žβˆ«β„€π‘π‘₯π‘™π‘‘πœ‡βˆ’π‘ž+(π‘₯)π‘žβˆ’11+π‘ž2π‘˜βˆ’2𝑗+1βˆ‘π‘™=0𝑙2π‘˜βˆ’2𝑗+1𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2π‘—βˆ’π‘™+1βˆ«β„€π‘π‘₯π‘™π‘‘πœ‡βˆ’π‘ž(⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭=[2]π‘₯)π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2π‘—βˆ’π‘™+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚πΊπ‘™+1,π‘ž+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€Έ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2π‘—βˆ’π‘™+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚πΊπ‘™+1,π‘ž+[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ§βŽͺβŽͺ⎨βŽͺβŽͺ⎩(2𝑗+1π‘žβˆ’1)2π‘˜βˆ’2π‘—βˆ‘π‘—=0𝑙2π‘˜βˆ’2π‘—βˆ’π‘™ξ€Έξ‚πΊ2π‘˜βˆ’2𝑗2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žξ‚πΊπ‘™+1,π‘ž+𝑙+1π‘žβˆ’11+π‘ž2π‘˜βˆ’2𝑗+1βˆ‘π‘™=0𝑙2π‘˜βˆ’2π‘—βˆ’π‘™+1𝐺2π‘˜βˆ’2𝑗+12π‘˜βˆ’2π‘—βˆ’π‘™+1𝐺𝑙+1,π‘žβŽ«βŽͺβŽͺ⎬βŽͺβŽͺ⎭.𝑙+1(3.6)
Equating 𝐼3 and 𝐼4, we complete the proof of the theorem.

As π‘žβ†’1 in the above theorem, we reach interesting property in Analytic Numbers Theory concerning ordinary Genocchi polynomials.

Corollary 3.3. For π‘˜βˆˆβ„•, one has π‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚»2πΊπ‘˜+𝑙+2βˆ’πΊπ‘˜+𝑙+2π‘˜+𝑙+1ξ‚Όπ‘˜+𝑙+1=2[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2𝑗+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™πΊπ‘™+1+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€Έ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0𝑙2π‘˜βˆ’2𝑗+1𝐺𝑙+12π‘˜+1βˆ’2π‘—βˆ’π‘™πΊπ‘™+1.(3.7)

Theorem 3.4. For π‘š,π‘˜βˆˆβ„•, one has [2]π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ‚π΅π‘™+π‘˜,π‘ž=max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘š+1βˆ’π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž.(3.8)

Proof. We consider (2.11) and (2.2) by means of π‘ž-Volkenborn integral. Then, by (2.11), we see [2]π‘žξ€œβ„€π‘π‘₯π‘˜(π‘₯βˆ’1)π‘šπ‘‘πœ‡π‘ž[2](π‘₯)=π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ€œβ„€π‘π‘₯𝑙+π‘˜π‘‘πœ‡π‘ž[2](π‘₯)=π‘žπ‘šξ“π‘™=0βŽ›βŽœβŽœβŽπ‘šπ‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘šβˆ’π‘™ξ‚π΅π‘™+π‘˜,π‘ž.(3.9) On the other hand, max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘š+1βˆ’π‘—βˆ’π‘™,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡π‘ž=(π‘₯)max{π‘˜,π‘š}𝑗=0π‘žξ€·π‘˜π‘—ξ€Έ+(βˆ’1)π‘—ξ€·π‘šπ‘—ξ€Έπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘šβˆ’π‘—+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊπ‘˜+π‘šβˆ’π‘—+1π‘˜+π‘š+1βˆ’π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž.(3.10) Therefore, we get the proof of theorem.

Corollary 3.5. For π‘˜βˆˆβ„•, one gets π‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚†[2]π‘žξ‚π΅π‘˜+𝑙+1,π‘žξ‚π΅βˆ’π‘žπ‘˜+𝑙,π‘žξ‚‡=[2]π‘ž[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€ΈΓ—2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2kβˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+ξ‚΅π‘žβˆ’1ξ‚Άπ‘ž+1[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ π‘†2𝑗+1π‘žπ‘˜,𝑗,(3.11) where π‘†π‘žπ‘˜,𝑗=[2]π‘žβˆ‘2π‘˜βˆ’2𝑗𝑗=0ξ€·(1/(2π‘˜βˆ’2𝑗))𝑙2π‘˜βˆ’2𝑗𝐺2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+βˆ‘2π‘˜βˆ’2𝑗+1𝑙=0ξ€·(1/(2π‘˜βˆ’2𝑗+1))𝑙2π‘˜βˆ’2𝑗+1𝐺2π‘˜βˆ’2π‘—βˆ’π‘™+1𝐡𝑙,π‘ž.

Proof. By using 𝑝-adic π‘ž-integral on ℀𝑝 left-hand side of Theorem 2.5, we get 𝐼5=[2]π‘žξ€œβ„€π‘π‘₯π‘˜(π‘₯βˆ’1)π‘˜([2]π‘₯βˆ’π‘ž)π‘‘πœ‡π‘ž(=[2]π‘₯)π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ€œβ„€π‘π‘₯π‘˜+𝑙+1π‘‘πœ‡π‘ž(π‘₯)βˆ’π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ€œβ„€π‘π‘₯π‘˜+π‘™π‘‘πœ‡π‘ž=[2](π‘₯)π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚π΅π‘˜+𝑙+1,π‘žβˆ’π‘žπ‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ‚π΅π‘˜+𝑙,π‘ž.(3.12) Also, we compute the right-hand side of Theorem 2.5 as follows: 𝐼6=[2]π‘ž[π‘˜/2]𝑗=01βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ 2π‘˜βˆ’2𝑗+12𝑗2π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡π‘ž+(π‘₯)[π‘˜/2]𝑗=11βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ 2π‘˜βˆ’2𝑗+12π‘—βˆ’12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ€œβ„€π‘π‘₯π‘™π‘‘πœ‡π‘ž(+π‘₯)[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ§βŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺ⎩2𝑗+1(π‘žβˆ’1)2π‘˜βˆ’2π‘—βˆ‘π‘—=01βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žβˆ«β„€π‘π‘₯π‘™π‘‘πœ‡π‘ž+(π‘₯)π‘žβˆ’11+π‘ž2π‘˜βˆ’2𝑗+1βˆ‘π‘™=01βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+12π‘˜βˆ’2π‘—βˆ’π‘™+1βˆ«β„€π‘π‘₯π‘™π‘‘πœ‡π‘žβŽ«βŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺ⎭=[2](π‘₯)π‘ž[π‘˜/2]𝑗=01βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ 2π‘˜βˆ’2𝑗+12𝑗2π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+[π‘˜/2]𝑗=11βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ 2π‘˜βˆ’2𝑗+12π‘—βˆ’12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+[π‘˜/2]𝑗=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ βŽ§βŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺ⎩2𝑗+1(π‘žβˆ’1)2π‘˜βˆ’2π‘—βˆ‘π‘—=01βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗2π‘˜βˆ’2𝑗2π‘˜βˆ’2π‘—βˆ’π‘™,π‘žξ‚π΅π‘™,π‘ž+π‘žβˆ’11+π‘ž2π‘˜βˆ’2𝑗+1βˆ‘π‘™=01βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ ξ‚πΊ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+12π‘˜βˆ’2π‘—βˆ’π‘™+1𝐡𝑙,π‘žβŽ«βŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺ⎭.(3.13)
Equating 𝐼5 and 𝐼6, we get the proof of Corollary.

As π‘žβ†’1 in the above theorem, we easily derive the following corollary.

Corollary 3.6. For π‘˜βˆˆβ„•, one has π‘˜ξ“π‘™=0βŽ›βŽœβŽœβŽπ‘˜π‘™βŽžβŽŸβŽŸβŽ (βˆ’1)π‘˜βˆ’π‘™ξ€½2π΅π‘˜+𝑙+1βˆ’π΅π‘˜+𝑙=2[π‘˜/2]𝑗=0ξ€·π‘˜2𝑗2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™π΅π‘™+[π‘˜/2]𝑗=1ξ€·π‘˜2π‘—βˆ’1ξ€Έ2π‘˜βˆ’2𝑗+12π‘˜βˆ’2𝑗+1𝑙=0βŽ›βŽœβŽœβŽπ‘™βŽžβŽŸβŽŸβŽ πΊ2π‘˜βˆ’2𝑗+12π‘˜+1βˆ’2π‘—βˆ’π‘™π΅π‘™.(3.14)

Acknowledgment

The author would like to express his sincere gratitude to the referee for his/her valuable comments and suggestions which have improved the presentation of the paper.