- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Annual Issues ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Journal of Function Spaces and Applications

VolumeΒ 2012Β (2012), Article IDΒ 293613, 10 pages

http://dx.doi.org/10.1155/2012/293613

## A Note on Multiplication and Composition Operators in Lorentz Spaces

^{1}Trinity University, One Trinity Place, San Antonio, TX 78212, USA^{2}US Air Force Academy, Colorado Springs, CO 80840, USA^{3}Department of Mathematics and Statistics, Auburn University, 221 Parker Hall, Auburn, AL 36849, USA

Received 6 February 2012; Accepted 21 June 2012

Academic Editor: GesturΒ Γlafsson

Copyright Β© 2012 Eddy Kwessi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

we revisit the Lorentz spaces for defined by G. G. Lorentz in the nineteen fifties and we show how the atomic decomposition of the spaces obtained by De Souza in 2010 can be used to characterize the multiplication and composition operators on these spaces. These characterizations, though obtained from a completely different perspective, confirm the various results obtained by S. C. Arora, G. Datt and S. Verma in different variants of the Lorentz Spaces.

#### 1. Introduction

In the early 1950s, Lorentz introduced the now famous Lorentz spaces in his papers [1, 2] as a generalization of the spaces. The parameters and encode the information about the size of a function; that is, how tall and how spread out a function is. The Lorentz spaces are quasi-Banach spaces in general, but the Lorentz quasi-norm of a function has better control over the size of the function than the norm, via the parameters and , making the spaces very useful. We are mostly concerned with studying the multiplication and composition operators on Lorentz spaces. These have been studied before by various authors in particular by Arora et al. in [3β6]. In this paper, the results we obtain are in accordance with what these authors have found before. We believe that the techniques and relative simplicity of our approach are worth reporting to further enrich the topic. Our results, found on the boundary of the unit disc due to the original focus by De Souza in [7], will show how one can use the atomic characterization of the Lorentz space in the study of multiplication and composition operators in the spaces .

#### 2. Preliminaries

Let be a measure space.

*Definition 2.1. *Let be a complex-valued function defined on . *The decreasing rearrangement* of is the function defined on by
where is the *distribution *of the function .

*Definition 2.2. *Given a measurable function on and , define
The set of all functions with is called *the Lorentz space* with indices and and denoted by .

We now consider the measure on to be finite. Let be a -measurable function such that for a -measurable set and for an absolute constant . Here refers to the preimage of the set .

*Remark 2.3. *It is important to note that is not necessarily a norm.

*Definition 2.4. *For a given function , we define the multiplication operator on Lorentz spaces as and the composition operator as .

The following two results are used in our proofs. The first is a result of De Souza [7] which gives an atomic decomposition of . The second is the Marcinkiewicz interpolation theorem (see [8]) which we state for completeness of presentation.

Theorem 2.5 (see De Souza [7]). *A function for if and only if with , whereas is measure on and are -measurable sets in . Moreover, , where the infimum is taken over all possible representations of . *

Theorem 2.6 (see Marcinkiewicz). *Assume that for , for all , for all measurable subsets of , there are some constants such that for a linear or quasi-linear operator *(a)*. *(b)*. **
Then there is some such that for .*

One implication of Theorem 2.5 is that it can be used to prove and justify a theorem of Stein and Weiss [9]. That is, to show that linear operators are bounded, where is Banach space closed under absolute value and satisfying , all one needs to show is that . Theorem 2.6 will be used to show that valid results on are also valid on .

*Definition 2.7. *We denote by the set of real-valued functions defined on such that
where .

We will show that the space is equivalent to a weak space for some that depends on and and is quasinorm.

Lemma 2.8. * a quasinorm on . *

*Proof. * by definition. This implies that . Moreover, implies that for all ββ€β. Hence, we have , thus, since is a representative of an equivalence class. Now let be a real constant, , and . Noting , the homogeneity condition follows trivially. Let . Since ()ββ€β β+β, for any , we have
Since for , we have

Theorem 2.9. *, where . *

*Proof. *Suppose . There is an absolute constant such that for all ,
Thus, implying that .

Conversely, let . Then there is an absolute constant such that, . This implies that . Thus,
This implies that .

*Remark 2.10. *One can easily see from Theorem 2.9 that and . Moreover, . To see this, note that
for all since is decreasing. Taking the limit as , we see that .

#### 3. Main Results

##### 3.1. Multiplication Operators

Theorem 3.1 (see multiplication operator on ). *The multiplication operator for is bounded if and only . Moreover, . *

*Proof. * It is convenient to use which is equivalent to . Assume that . Then for where ,
Multiplying and dividing the integrand on the left by , we get
Since is decreasing on and , we have
Taking the supremum over all , we have that .

Assume that and . Since we have
And so,
Using the atomic decomposition of , we get

To prove the second part of the theorem, first note that the expression in (3.5) gives that . Now take . We can easily see that and for since is decreasing. Now taking the over and the limit as gives . Thus, .

The following theorem, which is equivalent to Theorem 1.1 of [6], follows from Theorems 2.6 and 3.1.

Theorem 3.2 (see multiplication operator on ). *The multiplication operator is bounded if and only if for . Moreover, .*

*Remark 3.3. *Since, by Theorem 2.9, for , the theorem implies that if the multiplication operator defined by is bounded, then for .

*Remark 3.4. *It is worth observing that the norm
can also be used to prove the previous theorem, first on and then on by means of either the Marcienkiewiecz Inteporlation Theorem or Theorem 2.5. Actually, this norm was the original motivation for the introduction of the space . For sake of simplicity and without loss of generality, we modified it by replacing , by .

Theorem 3.5. *If , and , where , then where β=β and .*

*Proof. * Given , assume and . Let be such that and . Since , we have
Using Holderβs inequality on the RHS with , we have
Thus, we have

Theorem 3.6. *If , then is bounded, where and for and . *

*Proof. * Let
Therefore,
That is,

Noting that , , it is easy to see that Theorem 3.6 shows that the result of Theorem 3.5 extends to the case where .

##### 3.2. Composition Operators

Theorem 3.7. *The composition operator is bounded if and only if there is an absolute constant C such that
**
for all -measurable sets and for . Moreover, .*

*Proof. * We will prove this theorem for and use the interpolation theorem to conclude for .

First assume that is bounded that is, there is an absolute constant such that
Let be a -measurable set in and let . Then, (3.15) is equivalent to
that is,
Since , then . Therefore, the previous inequality gives
And hence,

On the other hand, assume that there is some constant such that . Then,
Consequently,
As a consequence of Theorem 2.5 or the result by Weiss and Stein in [9], we have

To prove the second part of the theorem, note that from the above, we have
But . Thus, . To obtain the other inequality, let . This gives and
Thus,
Now to show the result for , note that the operator is linear on and that for and such that , we have and . Since , then for some absolute constants and we have

Hence, by the interpolation theorem we conclude that there is a constant such that

*Remark 3.8. *The necessary and sufficient condition (3.14) makes intuitive sense if we consider a variety of measures. Let us consider two of them. (1)If is the Lebesgue measure and happens to be an interval, then it suffices to take as the left multiplication by an absolute constant to achieve (3.14).(2)If instead is the Haar measure, by taking , the locally compact topological group of nonzero real numbers with multiplication as operation, then for any Borel set , we have . Hence (3.14) is achieved for a measurable function such that . The left multiplication by the reciprocal of an absolute constant would be enough.

*Remark 3.9. *The results in Theorems 3.6 and 3.7 are in accordance with the results of Arora et al. in [5, 6]. In fact, even though they obtained their results in a more general version of Lorentz spaces, their necessary and sufficient conditions for boundedness of the multiplication and composition operators are the same as ours.

#### 4. Discussion

The space , seems to be underutilized in analysis despite the fact that in the 1950s Stein and Weiss [9] showed that for a sublinear operator and a Banach space if , then ; that is, can be extended to the whole . De Souza [7] showed that the reason for this is the nature of in that if and only if with . This βatomic decomposition of β provides us with a technique to study operators on and in particular . In other words, to study operators on , all we need is to study the actions of the operator on characteristic functions which can then be lifted to through the use of interpolation theorems. Although we only considered multiplication and composition operators, other operators (Hardy-Littlewood maximal, Carleson maximal, Hankel, etc.) can be studies likewise.

To conclude, the goal of the present paper is to show that a simple atomic decomposition of spaces shows the boundedness of operators on straightforward. In fact, we showed that unlike other techniques in the literature, the boundedness of these operators on characteristic functions is enough to generalize to the whole Lorentz space. This technique is not new at all, since it was first used by Stein and Weiss in [9] to extend the Marcinkiewicz interpolation theorem. The broader question is if the the same technique can be extended to Lorentz-Bochner spaces and even Lorentz-martingale spaces. If answered positively, the technique proposed in our paper will contrast the ones by Yong et al. in [10], which we believe are not as straightforward as ours. It has been shown in the literature that operators such as the centered Hardy operator, the Hilbert operator (under condition) are all bounded on Lorentz spaces. Usually the proofs of these facts are not trivial, so by first finding an atomic decomposition on Lorentz spaces , it would be easier to get another proof of the boundedness of these operators, without having to resort to the Bennett and Sharpley inequality in [11]. It is important to note that, atomic decomposition on general Banach spaces has been found in [12], under the same line of research as ours. Because characteristic functions are easy to manipulate, an even broader question would be to find the class of Banach spaces whose atomic decomposition can be expressed in terms of characteristic functions only.

#### References

- G. G. Lorentz, βSome new functional spaces,β
*Annals of Mathematics*, vol. 51, pp. 37β55, 1950. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH - G. G. Lorentz, βOn the theory of spaces,β
*Pacific Journal of Mathematics*, vol. 1, pp. 411β429, 1951. View at Google Scholar Β· View at Zentralblatt MATH - S. C. Arora, G. Datt, and S. Verma, βComposition operators on Lorentz spaces,β
*Bulletin of the Australian Mathematical Society*, vol. 76, no. 2, pp. 205β214, 2007. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH - S. C. Arora, G. Datt, and S. Verma, βMultiplication and composition operators on Orlicz-Lorentz spaces,β
*International Journal of Mathematical Analysis*, vol. 1, no. 25–28, pp. 1227β1234, 2007. View at Google Scholar Β· View at Zentralblatt MATH - S. C. Arora, G. Datt, and S. Verma, βComposition operators on Lorentz spaces,β
*Bulletin of the Australian Mathematical Society*, vol. 76, no. 2, pp. 205β214, 2007. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH - S. C. Arora, G. Datt, and S. Verma, βMultiplication and composition operators on Lorentz-Bochner spaces,β
*Osaka Journal of Mathematics*, vol. 45, no. 3, pp. 629β641, 2008. View at Google Scholar Β· View at Zentralblatt MATH - G. De Souza, βA new characterization of the Lorentz spaces $L(p,1)$ for $p>1$ and applications,β in
*Proceedings of the Real Analysis Exchange*, pp. 55β58, 2010. - L. Grafakos,
*Classical Fourier analysis*, vol. 249 of*Graduate Texts in Mathematics*, Springer, New York, NY, USA, 2nd edition, 2008. - E. M. Stein and G. Weiss, βAn extension of a theorem of Marcinkiewicz and some of its applications,β vol. 8, pp. 263β284, 1959. View at Google Scholar Β· View at Zentralblatt MATH
- J. Yong, P. Lihua, and L. Peide, βAtomic decompositions of Lorentz martingale spaces and applications,β
*Journal of Function Spaces and Applications*, vol. 7, no. 2, pp. 153β166, 2009. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH - S. Bennett and R. Sharpley,
*Interpolation of Operators*, vol. 129 of*Pure and Applied Mathematics*, Academic Press, Boston, Mass, USA, 1988. View at Zentralblatt MATH - H. G. Feichtinger and G. Zimmermann, βAn exotic minimal Banach space of functions,β
*Mathematische Nachrichten*, vol. 239/240, pp. 42β61, 2002. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH