About this Journal Submit a Manuscript Table of Contents
Journal of Function Spaces and Applications
Volume 2012 (2012), Article ID 809121, 17 pages
http://dx.doi.org/10.1155/2012/809121
Research Article

Anisotropic Weak Hardy Spaces and Wavelets

1Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Matemáticas (ICMAT, CSIC-UAM, UC3M, UCM), C/Nicolás Cabrera 15, 28049 Madrid, Spain
2Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avenida Astrofísico Francisco Sánchez s/n, Santa Cruz de Tenerife, 38271 La Laguna, Spain

Received 17 January 2012; Accepted 5 April 2012

Academic Editor: Quanhua Xu

Copyright © 2012 B. Barrios and J. J. Betancor. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bownik, “Anisotropic Hardy spaces and wavelets,” Memoirs of the American Mathematical Society, vol. 164, no. 781, 2003. View at Zentralblatt MATH
  2. M. Bownik, “Atomic and molecular decompositions of anisotropic Besov spaces,” Mathematische Zeitschrift, vol. 250, no. 3, pp. 539–571, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. M. Bownik and K.-P. Ho, “Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces,” Transactions of the American Mathematical Society, vol. 358, no. 4, pp. 1469–1510, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. M. Bownik, “Anisotropic Triebel-Lizorkin spaces with doubling measures,” The Journal of Geometric Analysis, vol. 17, no. 3, pp. 387–424, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. M. Bownik, “Duality and interpolation of anisotropic Triebel-Lizorkin spaces,” Mathematische Zeitschrift, vol. 259, no. 1, pp. 131–169, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. C. Fefferman and E. M. Stein, “Hp spaces of several variables,” Acta Mathematica, vol. 129, no. 3-4, pp. 137–193, 1972. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. M. Bownik, B. Li, D. Yang, and Y. Zhou, “Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators,” Indiana University Mathematics Journal, vol. 57, no. 7, pp. 3065–3100, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. M. Bownik, B. Li, D. Yang, and Y. Zhou, “Weighted anisotropic product Hardy spaces and boundedness of sublinear operators,” Mathematische Nachrichten, vol. 283, no. 3, pp. 392–442, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. Y. Ding and S. Lan, “Anisotropic weak Hardy spaces and interpolation theorems,” Science in China. Series A. Mathematics, vol. 51, no. 9, pp. 1690–1704, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. H. P. Liu, “The wavelet characterization of the space weak H1,” Studia Mathematica, vol. 103, no. 1, pp. 109–117, 1992. View at Zentralblatt MATH
  11. Y. Meyer, Wavelets and Operators, vol. 37 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1992.
  12. R. Fefferman and F. Soria, “The space Weak H1,” Studia Mathematica, vol. 85, no. 1, pp. 1–16, 1986. View at Zentralblatt MATH
  13. M. Bownik and K.-P. Ho, “Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces,” Transactions of the American Mathematical Society, vol. 358, no. 4, pp. 1469–1510, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH