- About this Journal ·
- Abstracting and Indexing ·
- Advance Access ·
- Aims and Scope ·
- Annual Issues ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Journal of Function Spaces and Applications

Volume 2013 (2013), Article ID 275702, 3 pages

http://dx.doi.org/10.1155/2013/275702

## The Space of Continuous Periodic Functions Is a Set of First Category in

^{1}College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China^{2}Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA

Received 17 January 2013; Accepted 12 February 2013

Academic Editor: Józef Banas

Copyright © 2013 Zhe-Ming Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

We prove that the space of continuous periodic functions is a set of first category in the space of almost periodic functions, and we also show that the space of almost periodic functions is a set of first category in the space of almost automorphic functions.

#### 1. Introduction

Since the last century, the study on almost periodic type functions and their applications to evolution equations has been of great interest for many mathematicians. There is a large literature on this topic. Several books are especially devoted to almost periodic type functions and their applications to differential equations and dynamical systems. For example, let us indicate the books of Amerio and Prouse [1], Bezandry and Diagana [2], Bohr [3], Corduneanu [4], Diagana [5], Fink [6], Levitan and Zhikov [7], N’Guérékata [8, 9], Pankov [10], Shen and Yi [11], Zaidman [12], and Zhang [13].

Although almost periodic functions have a very wide range of applications now, it seems that giving an example of almost periodic (not periodic) functions is more difficult than giving an example of periodic functions. Also, there is a similar problem for almost automorphic functions. In this paper, we aim to compare the “amount” of almost periodic functions (not periodic) with the “amount” of continuous periodic functions, and we also discuss the related problems for almost automorphic functions.

#### 2. Main Results

Throughout the rest of this paper, we denote by the set of real numbers, by a Banach space, and by the set of all continuous functions .

*Definition 1 (see [4]). * A function is called almost periodic if, for every , there exists such that every interval of length contains a number with the property that
We denote the collection of all such functions by .

Recall that is a Banach space under the supremum norm.

*Definition 2. *A function is called periodic if there exists such that
Here, is called a period of . We denote the collection of all such functions by . For , we call the fundamental period if is the smallest period of .

*Remark 3. *Similar to the proof in [4, page 1], it is not difficult to show that if is not constant, and then has the fundamental period.

*Definition 4 (see [8]). *A function is called almost automorphic if, for every real sequence , there exists a subsequence such that
is well defined for each and
for each . Denote by the set of all such functions.

Recall that there exists an almost automorphic function which is not almost periodic, for instance, the following function:

Before the proof of our main results, we need to recall the notion about the first category.

*Definition 5 (see [14]). *Let be a topological space. A set is said to be nowhere dense if its closure has an empty interior. The sets of the first category in are those that are countable unions of nowhere dense sets. Any subset of that is not of the first category is said to be of the second category in .

Theorem 6. * is a set of first category in . *

*Proof. *For , we denote

Then, it is easy to see that
We divide the remaining proof into two steps.*Step??1*. Every is a closed subset of .

Let . Then, for every , there exists such that . Denote
In addition, due to the continuity of , for every , there exists such that
Obviously, we have
Then, by the Heine-Borel theorem, there exists such that
where is a fixed positive integer. Letting , and
for every , we claim that . In fact, for every , there exists such that
Then, by (9), we have
which yields that
where was used. So, we know that , which means that is a closed subset of .*Step??2*. Every has an empty interior.

It suffices to prove that, for every and , . Now let and . In the following, we discuss two cases.*Case I*. is constant.

We denote

where is some constant with . Then and since is not periodic.*Case II*. is not constant.

By Remark 3, has a fundamental period . We denote
where . Obviously, . Also, we claim that . In fact, if this is not true, then there exists such that
that is,
Let
Then . If , where is a fixed constant, then
which yields
since is bounded. Thus, we have
Noting that is the fundamental period of and is the fundamental period of , there exist two positive integers such that
that is, , which is a contradiction. If is not constant, then, by Remark 3, we can assume that is the fundamental period of and . Noting that is a period of and is a period of , similar to the above proof, we can also show that is a rational number, which is a contradiction.

In conclusion, is countable unions of closed subsets with empty interior. So is a set of first category.

*Remark 7. *Since is a set of second category, it follows from Theorem 6 that is a set of second category, which means that, to some extent, the “amount” of almost periodic functions (not periodic) is far more than the “amount” of continuous periodic functions.

Theorem 8. * is a set of first category in . *

*Proof. *Firstly, is a closed subset of . Secondly, has an empty interior in . In fact, letting
for every and , we have and , where
and is some constant with . This completes the proof.

*Remark 9. *By Theorem 8, is a set of second category in , which means that, to some extent, the “amount” of almost automorphic functions (not almost periodic) is far more than the “amount” of almost periodic functions.

#### Acknowledgments

H.-S. Ding acknowledges support from the NSF of China (11101192), the Chinese Ministry of Education (211090), the NSF of Jiangxi Province (20114BAB211002), and the Jiangxi Provincial Education Department (GJJ12173).

#### References

- L. Amerio and G. Prouse,
*Almost-Periodic Functions and Functional Equations*, The University Series in Higher Mathematics, Van Nostrand Reinhold, New York, NY, USA, 1971. View at Zentralblatt MATH · View at MathSciNet - P. H. Bezandry and T. Diagana,
*Almost Periodic Stochastic Processes*, Springer, New York, NY, USA, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - H. Bohr,
*Almost Periodic Functions*, Chelsea Publishing, New York, NY, USA, 1947. View at Zentralblatt MATH · View at MathSciNet - C. Corduneanu,
*Almost Periodic Functions*, Chelsea Publishing, New York, NY, USA, 2nd edition, 1989. - T. Diagana,
*Pseudo Almost Periodic Functions in Banach Spaces*, Nova Science, New York, BY, USA, 2007. View at Zentralblatt MATH · View at MathSciNet - A. M. Fink,
*Almost Periodic Differential Equations*, vol. 377 of*Lecture Notes in Mathematics*, Springer, Berlin, Germany, 1974. View at Zentralblatt MATH · View at MathSciNet - B. M. Levitan and V. V. Zhikov,
*Almost Periodic Functions and Differential Equations*, Cambridge University Press, Cambridge, UK, 1982. View at Zentralblatt MATH · View at MathSciNet - G. M. N'Guérékata,
*Almost Automorphic and Almost Periodic Functions in Abstract Spaces*, Kluwer Academic, New York, NY, USA, 2001. View at Zentralblatt MATH · View at MathSciNet - G. M. N'Guérékata,
*Topics in Almost Automorphy*, Springer, New York, NY, USA, 2005. View at Zentralblatt MATH · View at MathSciNet - A. A. Pankov,
*Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations*, vol. 55 of*Mathematics and its Applications (Soviet Series)*, Kluwer Academic, Dordrecht, The Netherlands, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - W. X. Shen and Y. F. Yi,
*Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows*, no. 647 of Memoirs of the American Mathematical Society, 1998. - S. Zaidman,
*Almost-Periodic Functions in Abstract Spaces*, vol. 126 of*Research Notes in Mathematics*, Pitman, Boston, Mass, USA, 1985. View at Zentralblatt MATH · View at MathSciNet - C. Zhang,
*Almost Periodic Type Functions and Ergodicity*, Kluwer Academic, Dordrecht, The Netherlands, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet - W. Rudin,
*Functional Analysis*, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, NY, USA, 2nd edition, 1991. View at Zentralblatt MATH · View at MathSciNet