About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 149135, 22 pages
http://dx.doi.org/10.1155/2012/149135
Review Article

Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

1Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
2Faculty of Medicine, King Fahad Medical City and King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
3Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
4Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA

Received 2 September 2012; Revised 19 November 2012; Accepted 20 November 2012

Academic Editor: Mario Clerici

Copyright © 2012 Aziz Alami Chentoufi and Lbachir BenMohamed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Bettahi, X. Zhang, R. E. Afifi, and L. BenMohamed, “Protective immunity to genital herpes simplex virus type 1 and type 2 provided by self-adjuvanting lipopeptides that drive dendritic cell maturation and elicit a polarized Th1 immune response,” Viral Immunology, vol. 19, no. 2, pp. 220–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Zhang, A. A. Chentoufi, G. Dasgupta et al., “A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge,” Mucosal Immunology, vol. 2, no. 2, pp. 129–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Zhang, X. Dervillez, A. A. Chentoufi, T. Badakhshan, I. Bettahi, and L. BenMohamed, “Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88,” Journal of Immunology, vol. 189, no. 9, pp. 4496–4509, 2012. View at Publisher · View at Google Scholar
  4. M. Gilbert, X. Li, M. Petric et al., “Using centralized laboratory data to monitor trends in Herpes Simplex Virus type 1 and 2 infection in British Columbia and the changing etiology of genital Herpes,” Canadian Journal of Public Health, vol. 102, no. 3, pp. 225–229, 2011. View at Scopus
  5. R. B. Belshe, P. A. Leone, D. I. Bernstein et al., “Efficacy results of a trial of a herpes simplex vaccine,” The New England Journal of Medicine, vol. 366, no. 1, pp. 34–43, 2012. View at Publisher · View at Google Scholar
  6. S. J. Allen, K. R. Mott, A. A. Chentoufi et al., “CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection,” Journal of Virology, vol. 85, no. 19, pp. 9945–9955, 2011. View at Publisher · View at Google Scholar
  7. A. A. Chentoufi, E. Kritzer, D. M. Yu, A. B. Nesburn, and L. Benmohamed, “Towards a rational design of an asymptomatic clinical herpes vaccine: the old, the new, and the unknown,” Clinical and Developmental Immunology, vol. 2012, Article ID 187585, 16 pages, 2012. View at Publisher · View at Google Scholar
  8. G. Dasgupta and L. BenMohamed, “Of mice and not humans: how reliable are animal models for evaluation of herpes CD8+-T cell-epitopes-based immunotherapeutic vaccine candidates?” Vaccine, vol. 29, no. 35, pp. 5824–5836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. W. Kimberlin, R. J. Whitley, W. Wan et al., “Oral acyclovir suppression and neurodevelopment after neonatal herpes,” The New England Journal of Medicine, vol. 365, no. 14, pp. 1284–1292, 2011. View at Publisher · View at Google Scholar
  10. S. I. M. Wolfert, E. P. de Jong, A. C. T. M. Vossen et al., “Diagnostic and therapeutic management for suspected neonatal herpes simplex virus infection,” Journal of Clinical Virology, vol. 51, no. 1, pp. 8–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Gershon, “Neonatal herpes simplex infection and the Three Musketeers,” The New England Journal of Medicine, vol. 365, no. 14, pp. 1338–1339, 2011. View at Publisher · View at Google Scholar
  12. D. M. Koelle and L. Corey, “Herpes simplex: insights on pathogenesis and possible vaccines,” Annual Review of Medicine, vol. 59, pp. 381–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. R. Wilhelmus, R. W. Beck, P. S. Moke et al., “Acyclovir for the prevention of recurrent herpes simplex virus eye disease,” The New England Journal of Medicine, vol. 339, no. 5, pp. 300–306, 1998. View at Publisher · View at Google Scholar
  14. S. Leflore, P. L. Anderson, and C. V. Fletcher, “A risk-benefit evaluation of aciclovir for the treatment and prophylaxis of herpes simplex virus infections,” Drug Safety, vol. 23, no. 2, pp. 131–142, 2000. View at Scopus
  15. C. Danve-Szatanek, M. Aymard, D. Thouvenot et al., “Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up,” Journal of Clinical Microbiology, vol. 42, no. 1, pp. 242–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. T. Leung and S. L. Sacks, “Current treatment options to prevent perinatal transmission of herpes simplex virus,” Expert Opinion on Pharmacotherapy, vol. 4, no. 10, pp. 1809–1819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. J. Oram, D. Marcellino, D. Strauss et al., “Characterization of an acyclovir-resistant herpes simplex virus type 2 strain isolated from a premature neonate,” Journal of Infectious Diseases, vol. 181, no. 4, pp. 1458–1461, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Stránská, R. Schuurman, E. Nienhuis et al., “Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization,” Journal of Clinical Virology, vol. 32, no. 1, pp. 7–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Czartoski, C. Liu, D. M. Koelle, S. Schmechel, A. Kalus, and A. Wald, “Fulminant, acyclovir-resistant, herpes simplex virus type 2 hepatitis in an immunocompetent woman,” Journal of Clinical Microbiology, vol. 44, no. 4, pp. 1584–1586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. F. Schinazi, V. del Bene, R. T. Scott, and J. B. Dudley-Thorpe, “Characterization of acyclovir-resistant and -sensitive herpes simplex viruses isolated from a patient with an acquired immune deficiency,” Journal of Antimicrobial Chemotherapy, vol. 18, supplement B, pp. 127–134, 1986. View at Scopus
  21. D. I. Bernstein and L. R. Stanberry, “Herpes simplex virus vaccines,” Vaccine, vol. 17, no. 13-14, pp. 1681–1689, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. L. R. Stanberry, “Herpes simplex virus vaccines as immunotherapeutic agents,” Trends in Microbiology, vol. 3, no. 6, pp. 244–247, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Nesburn, I. Bettahi, X. Zhang et al., “Topical/mucosal delivery of sub-unit vaccines that stimulate the ocular mucosal immune system,” Ocular Surface, vol. 4, no. 4, pp. 178–187, 2006. View at Scopus
  24. R. S. Sperling, K. H. Fife, T. J. Warren, L. P. Dix, and C. A. Brennan, “The effect of daily valacyclovir suppression on herpes simplex virus type 2 viral shedding in HSV-2 seropositive subjects without a history of genital herpes,” Sexually Transmitted Diseases, vol. 35, no. 3, pp. 286–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. Fife, T. J. Warren, S. E. Justus, and C. K. Heitman, “An international, randomized, double-blind, placebo-controlled, study of valacyclovir for the suppression of herpes simplex virus type 2 genital herpes in newly diagnosed patients,” Sexually Transmitted Diseases, vol. 35, no. 7, pp. 666–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Cates Jr., “Estimates of the incidence and prevalence of sexually transmitted diseases in the United States,” Sexually Transmitted Diseases, vol. 26, no. 4, pp. S2–S7, 1999. View at Scopus
  27. L. J. Abu-Raddad, A. S. Magaret, C. Celum et al., “Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa,” PLoS ONE, vol. 3, no. 5, Article ID e2230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. C. Des Jarlais, H. Hagan, K. Arasteh, C. McKnight, D. Perlman, and S. R. Friedman, “Herpes simplex virus-2 and HIV among noninjecting drug users in New York City,” Sexually Transmitted Diseases, vol. 34, no. 11, pp. 923–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. R. Friedman, M. Bolyard, M. Sandoval, P. Mateu-Gelabert, C. Maslow, and J. Zenilman, “Relative prevalence of different sexually transmitted infections in HIV-discordant sexual partnerships: data from a risk network study in a high-risk New York neighbourhood,” Sexually Transmitted Infections, vol. 84, no. 1, pp. 17–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Lubinski, T. Nagashunmugam, and H. M. Friedman, “Viral interference with antibody and complement,” Seminars in Cell and Developmental Biology, vol. 9, no. 3, pp. 329–337, 1998. View at Scopus
  31. G. W. Herget, U. N. Riede, A. Schmitt-Gräff, M. Lübbert, D. Neumann-Haefelin, and G. Köhler, “Generalized herpes simplex virus infection in an immunocompromised patient—report of a case and review of the literature,” Pathology Research and Practice, vol. 201, no. 2, pp. 123–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Wald and K. Link, “Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis,” Journal of Infectious Diseases, vol. 185, no. 1, pp. 45–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. G. N. Milligan, D. I. Bernstein, and N. Bourne, “T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2,” Journal of Immunology, vol. 160, no. 12, pp. 6093–6100, 1998. View at Scopus
  34. N. A. Kuklin, M. Daheshia, S. Chun, and B. T. Rouse, “Role of mucosal immunity in herpes simplex virus infection,” Journal of Immunology, vol. 160, no. 12, pp. 5998–6003, 1998. View at Scopus
  35. A. G. M. Langenberg, L. Corey, R. L. Ashley, W. P. Leong, and S. E. Straus, “A prospective study of new infections with herpes simplex virus type 1 and type 2,” The New England Journal of Medicine, vol. 341, no. 19, pp. 1432–1438, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Wald, J. Zeh, S. Selke et al., “Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons,” The New England Journal of Medicine, vol. 342, no. 12, pp. 844–850, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Koelle and L. Corey, “Recent progress in herpes simplex virus immunobiology and vaccine research,” Clinical Microbiology Reviews, vol. 16, no. 1, pp. 96–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. N. O'Farrell, “Increasing prevalence of genital herpes in developing countries: implications for heterosexual HIV transmission and STI control programmes,” Sexually Transmitted Infections, vol. 75, no. 6, pp. 377–384, 1999. View at Scopus
  39. H. Weiss, “Epidemiology of herpes simplex virus type 2 infection in the developing world,” Herpes, vol. 11, supplement 1, pp. 24A–35A, 2004. View at Scopus
  40. J. E. Malkin, “Epidemiology of genital herpes simplex virus infection in developed countries,” Herpes, vol. 11, supplement 1, pp. 2A–23A, 2004. View at Scopus
  41. T. H. Bacon, M. J. Levin, J. J. Leary, R. T. Sarisky, and D. Sutton, “Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy,” Clinical Microbiology Reviews, vol. 16, no. 1, pp. 114–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. T. Sarisky, T. H. Bacon, R. J. Boon et al., “Profiling penciclovir susceptibility and prevalence of resistance of herpes simplex virus isolates across eleven clinical trials,” Archives of Virology, vol. 148, no. 9, pp. 1757–1769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. K. Shin, A. Weinberg, S. Spruance et al., “Susceptibility of herpes simplex virus isolates to nucleoside analogues and the proportion of nucleoside-resistant variants after repeated topical application of penciclovir to recurrent herpes labialis,” Journal of Infectious Diseases, vol. 187, no. 8, pp. 1241–1245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Ziyaeyan, A. Alborzi, A. Japoni et al., “Frequency of acyclovir-resistant herpes simplex viruses isolated from the general immunocompetent population and patients with acquired immunodeficiency syndrome,” International Journal of Dermatology, vol. 46, no. 12, pp. 1263–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ziyaeyan, A. Japoni, M. H. Roostaee, S. Salehi, and H. Soleimanjahi, “A serological survey of herpes simplex virus type 1 and 2 immunity in pregnant women at labor stage in Tehran, Iran,” Pakistan Journal of Biological Sciences, vol. 10, no. 1, pp. 148–151, 2007. View at Scopus
  46. C. F. Pereira, K. Rutten, R. Stránská et al., “Spectrum of antiviral activity of o-(acetoxyphenyl)hept-2-ynyl sulphide (APHS),” International Journal of Antimicrobial Agents, vol. 25, no. 5, pp. 419–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. K. Shin, G. Y. Cai, A. Weinberg, J. J. Leary, and M. J. Levin, “Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates,” Journal of Clinical Microbiology, vol. 39, no. 3, pp. 913–917, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. D. T. Fleming, G. M. Mcquillan, R. E. Johnson et al., “Herpes simplex virus type 2 in the United States, 1976 to 1994,” The New England Journal of Medicine, vol. 337, no. 16, pp. 1105–1111, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. L. R. Stanberry, A. L. Cunningham, A. Mindel et al., “Prospects for control of herpes simplex virus disease through immunization,” Clinical Infectious Diseases, vol. 30, no. 3, pp. 549–566, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. L. R. Stanberry, S. L. Spruance, A. L. Cunningham et al., “Glycoprotein-D-adjuvant vaccine to prevent genital herpes,” The New England Journal of Medicine, vol. 347, no. 21, pp. 1652–1661, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Handel, E. J. Klingler, K. Washburn, S. Blank, and J. A. Schillinger, “Population-based surveillance for neonatal herpes in New York City, April 2006–September 2010,” Sexually Transmitted Diseases, vol. 38, no. 8, pp. 705–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Shann and R. Chiletti, “Neonatal herpes virus infection: duration of extracorporeal support and the dose of acyclovir,” Pediatric Critical Care Medicine, vol. 12, no. 5, pp. 605–606, 2011.
  53. C. Thompson and R. Whitley, “Neonatal herpes simplex virus infections: where are we now?” Advances in Experimental Medicine and Biology, vol. 697, pp. 221–230, 2011. View at Scopus
  54. Z. A. Brown, J. Benedetti, R. Ashley et al., “Neonatal herpes simplex virus infection in relation to asymptomatic maternal infection at the time of labor,” The New England Journal of Medicine, vol. 324, no. 18, pp. 1247–1252, 1991. View at Scopus
  55. C. Gardella, Z. Brown, A. Wald et al., “Risk factors for herpes simplex virus transmission to pregnant women: a couples study,” American Journal of Obstetrics and Gynecology, vol. 193, no. 6, pp. 1891–1899, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. G. Beauman, “Genital herpes: a review,” American Family Physician, vol. 72, no. 8, pp. 1527–1534, 2005. View at Scopus
  57. K. L. Cleary, E. Paré, D. Stamilio, and G. A. Macones, “Type-specific screening for asymptomatic herpes infection in pregnancy: a decision analysis,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 112, no. 6, pp. 731–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Tanchev and B. Shentov, “Herpes simplex virus infection in pregnancy and transmission to neonatal,” Akusherstvo i Ginekologiia, vol. 44, no. 6, pp. 31–35, 2005. View at Scopus
  59. B. A. Donoval, D. J. Passaro, and J. D. Klausner, “The public health imperative for a neonatal herpes simplex virus infection surveillance system,” Sexually Transmitted Diseases, vol. 33, no. 3, pp. 170–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. A. Brown, C. Gardella, A. Wald, R. A. Morrow, and L. Corey, “Genital herpes complicating pregnancy,” Obstetrics and Gynecology, vol. 106, no. 4, pp. 845–856, 2005. View at Scopus
  61. P. Singhal, S. Naswa, and Y. S. Marfatia, “Pregnancy and sexually transmitted viral infections,” Indian Journal of Sexually Transmitted Diseases, vol. 30, no. 2, pp. 71–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. A. Brown, A. Wald, R. A. Morrow, S. Selke, J. Zeh, and L. Corey, “Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant,” The Journal of the American Medical Association, vol. 289, no. 2, pp. 203–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. G. L. Westhoff, S. E. Little, and A. B. Caughey, “Herpes simplex virus and pregnancy: a review of the management of antenatal and peripartum herpes infections,” Obstetrical and Gynecological Survey, vol. 66, no. 10, pp. 629–638, 2011. View at Publisher · View at Google Scholar
  64. A. Cérbulo-Vázquez, R. Valdés-Ramos, and L. Santos-Argumedo, “Activated umbilical cord blood cells from pre-term and term neonates express CD69 and synthesize IL-2 but are unable to produce IFN-γ,” Archives of Medical Research, vol. 34, no. 2, pp. 100–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. G. W. Fischer, M. G. Ottolini, and J. J. Mond, “Prospects for vaccines during pregnancy and in the newborn period,” Clinics in Perinatology, vol. 24, no. 1, pp. 231–249, 1997. View at Scopus
  66. J. Englund, W. P. Glezen, and P. A. Piedra, “Maternal immunization against viral disease,” Vaccine, vol. 16, no. 14-15, pp. 1456–1463, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Holmlund, H. Nohynek, B. Quiambao, J. Ollgren, and H. Käyhty, “Mother-infant vaccination with pneumococcal polysaccharide vaccine: persistence of maternal antibodies and responses of infants to vaccination,” Vaccine, vol. 29, no. 28, pp. 4565–4575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. R. Schleiss, J. C. Lacayo, Y. Belkaid et al., “Preconceptual administration of an alphavirus replicon UL83 (pp65 homolog) vaccine induces humoral and cellular immunity and improves pregnancy outcome in the guinea pig model of congenital cytomegalovirus infection,” Journal of Infectious Diseases, vol. 195, no. 6, pp. 789–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. B. Wilks, E. C. Christian, M. S. Seaman et al., “Robust vaccine-elicited cellular immune responses in breast milk following systemic simian immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating rhesus monkeys,” Journal of Immunology, vol. 185, no. 11, pp. 7097–7106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. F. M. Munoz, J. A. Englund, C. C. Cheesman et al., “Maternal immunization with pneumococcal polysaccharide vaccine in the third trimester of gestation,” Vaccine, vol. 20, no. 5-6, pp. 826–837, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. M. L. Bagarazzi, J. D. Boyer, M. A. Javadian et al., “Systemic and mucosal immunity is elicited after both intramuscular and intravaginal delivery of human immunodeficiency virus type 1 DNA plasmid vaccines to pregnant chimpanzees,” Journal of Infectious Diseases, vol. 180, no. 4, pp. 1351–1355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. M. J. McCluskie, R. D. Weeratna, P. J. Payette, and H. L. Davis, “Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA,” FEMS Immunology and Medical Microbiology, vol. 32, no. 3, pp. 179–185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. L. BenMohamed, R. Krishnan, C. Auge, J. F. Primus, and D. J. Diamond, “Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses,” Immunology, vol. 106, no. 1, pp. 113–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. L. BenMohamed, Y. Belkaid, E. Loing, K. Brahimi, H. Gras-Masse, and P. Druilhe, “Systemic immune responses induced by mucosal administration of lipopeptides without adjuvant,” European Journal of Immunology, vol. 32, no. 8, pp. 2274–2281, 2002. View at Publisher · View at Google Scholar
  75. A. A. Chentoufi and L. BenMohamed, “Future viral vectors for the delivery of asymptomatic herpes epitope-based immunotherapeutic vaccines,” Future Virology, vol. 5, no. 5, pp. 525–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. A. Chentoufi, N. R. Binder, N. Berka et al., “Asymptomatic human CD4+ cytotoxic T-cell epitopes identified from herpes simplex virus glycoprotein B,” Journal of Virology, vol. 82, no. 23, pp. 11792–11802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Dasgupta, A. A. Chentoufi, M. Kalantari et al., “Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals,” Journal of Virology, vol. 86, no. 8, pp. 4358–4369, 2012. View at Publisher · View at Google Scholar
  78. G. Dasgupta, A. B. Nesburn, S. L. Wechsler, and L. BenMohamed, “Developing an asymptomatic mucosal herpes vaccine: the present and the future,” Future Microbiology, vol. 5, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. X. Dervillez, C. Gottimukkala, K. W. Kabbara et al., “Future of an “asymptomatic” T-cell epitope-based therapeutic herpes simplex vaccine,” Future Virology, vol. 7, no. 4, pp. 371–378, 2012. View at Publisher · View at Google Scholar
  80. A. Hayday and J. L. Viney, “The ins and outs of body surface immunology,” Science, vol. 290, no. 5489, pp. 97–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Knop and N. Knop, “The role of eye-associated lymphoid tissue in corneal immune protection,” Journal of Anatomy, vol. 206, no. 3, pp. 271–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. A. B. Nesburn, I. Bettahi, G. Dasgupta et al., “Functional Foxp3+ CD4+ CD25(Bright+) “natural” regulatory T cells are abundant in rabbit conjunctiva and suppress virus-specific CD4+ and CD8+ effector T cells during ocular herpes infection,” Journal of Virology, vol. 81, no. 14, pp. 7647–7661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. A. B. Nesburn, T. V. Ramos, X. Zhu, H. Asgarzadeh, V. Nguyen, and L. Benmohamed, “Local and systemic B cell and Th1 responses induced following ocular mucosal delivery of multiple epitopes of herpes simplex virus type 1 glycoprotein D together with cytosine-phosphate-guanine adjuvant,” Vaccine, vol. 23, no. 7, pp. 873–883, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Bettahi, A. B. Nesburn, S. Yoon et al., “Protective immunity against ocular herpes infection and disease induced by highly immunogenic self-adjuvanting glycoprotein D lipopeptide vaccines,” Investigative Ophthalmology and Visual Science, vol. 48, no. 10, pp. 4643–4653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Zhang, A. Issagholian, E. A. Berg, J. B. Fishman, A. B. Nesburn, and L. BenMohamed, “Th-cytotoxic T-lymphocyte chimeric epitopes extended by Nε-palmitoyl lysines induce herpes simplex virus type 1-specific effector CD8+ Tc1 responses and protect against ocular infection,” Journal of Virology, vol. 79, no. 24, pp. 15289–15301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Zhu, T. V. Ramos, H. Gras-Masse, B. E. Kaplan, and L. BenMohamed, “Lipopeptide epitopes extended by an NE-palmitoyl-lysine moiety increase uptake and maturation of dendritic cells through a Toll-like receptor-2 pathway and trigger a Th1-dependent protective immunity,” European Journal of Immunology, vol. 34, no. 11, pp. 3102–3114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Knop and N. Knop, “Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system,” Ophthalmologe, vol. 100, no. 11, pp. 929–942, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. P. C. Montgomery, J. H. Rockey, and A. S. Majumdar, “Parameters influencing the expression of IgA antibodies in tears,” Investigative Ophthalmology and Visual Science, vol. 25, no. 3, pp. 369–373, 1984.
  89. D. M. R. Lathers, R. F. Gill, and P. C. Montgomery, “Inductive pathways leading to rat tear IgA antibody responses,” Investigative Ophthalmology and Visual Science, vol. 39, no. 6, pp. 1005–1011, 1998. View at Scopus
  90. W. Saitoh-Inagawa, T. Hiroi, M. Yanagita et al., “Unique characteristics of lacrimal glands as a part of mucosal immune network: high frequency of IgA-committed B-1 cells and NK1.1+ αβ T cells,” Investigative Ophthalmology and Visual Science, vol. 41, no. 1, pp. 138–144, 2000. View at Scopus
  91. N. Knop and E. Knop, “Ultrastructural anatomy of CALT follicles in the rabbit reveal characteristics of M-cells, germinal centres and high endothelial venules,” Journal of Anatomy, vol. 207, no. 4, pp. 409–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. C. M. Richards, R. Case, T. R. Hirst, T. J. Hill, and N. A. Williams, “Protection against recurrent ocular herpes simplex virus type 1 disease after therapeutic vaccination of latently infected mice,” Journal of Virology, vol. 77, no. 12, pp. 6692–6699, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Byun, M. Ohmura, K. Fujihashi et al., “Nasal immunization with E. coli verotoxin 1 (VT1)-B subunit and a nontoxic mutant of cholera toxin elicits serum neutralizing antibodies,” Vaccine, vol. 19, no. 15-16, pp. 2061–2070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Olszewska, J. Erume, J. Ripley, M. W. Steward, and C. D. Partidos, “Immune responses and protection induced by mucosal and systemic immunisation with recombinant measles nucleoprotein in a mouse model of measles virus-induced encephalitis,” Archives of Virology, vol. 146, no. 2, pp. 293–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. W. S. Gallichan, R. N. Woolstencroft, T. Guarasci, M. J. McCluskie, H. L. Davis, and K. L. Rosenthal, “Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract,” Journal of Immunology, vol. 166, no. 5, pp. 3451–3457, 2001. View at Scopus
  96. E. L. Parr and M. B. Parr, “Immune responses and protection against vaginal infection after nasal or vaginal immunization with attenuated herpes simplex virus type-2,” Immunology, vol. 98, no. 4, pp. 639–645, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Knop, N. Knop, and H. Brewitt, “Dry eye disease as a complex dysregulation of the functional anatomy of the ocular surface. New impulses to understanding dry eye disease,” Ophthalmologe, vol. 100, no. 11, pp. 917–928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. C. F. Kuper, P. J. Koornstra, D. M. H. Hameleers et al., “The role of nasopharyngeal lymphoid tissue,” Immunology Today, vol. 13, no. 6, pp. 219–224, 1992. View at Scopus
  99. A. A. Chentoufi, G. Dasgupta, A. B. Nesburn et al., “Nasolacrimal duct closure modulates ocular mucosal and systemic CD4+ T-cell responses induced following topical ocular or intranasal immunization,” Clinical and Vaccine Immunology, vol. 17, no. 3, pp. 342–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Gebhardt, L. M. Wakim, L. Eidsmo, P. C. Reading, W. R. Heath, and F. R. Carbone, “Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus,” Nature Immunology, vol. 10, no. 5, pp. 524–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. X. Jiang, R. A. Clark, L. Liu, A. J. Wagers, R. C. Fuhlbrigge, and T. S. Kupper, “Skin infection generates non-migratory memory CD8+ T (RM) cells providing global skin immunity,” Nature, vol. 483, no. 7388, pp. 227–231, 2012. View at Publisher · View at Google Scholar
  102. T. Gebhardt, P. G. Whitney, A. Zaid et al., “Different patterns of peripheral migration by memory CD4+ and CD8+ T cells,” Nature, vol. 477, no. 7363, pp. 216–219, 2011. View at Publisher · View at Google Scholar
  103. D. A. Stevens and T. C. Merigan, “Approaches to the control of viral infections in man,” Rational Drug Therapy, vol. 5, no. 9, pp. 1–5, 1971. View at Scopus
  104. K. A. Laycock, S. F. Lee, R. H. Brady, and J. S. Pepose, “Characterization of a murine model of recurrent herpes simplex viral keratitis induced by ultraviolet B radiation,” Investigative Ophthalmology and Visual Science, vol. 32, no. 10, pp. 2741–2746, 1991. View at Scopus
  105. N. M. Sawtell and R. L. Thompson, “Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency,” Journal of Virology, vol. 66, no. 4, pp. 2157–2169, 1992. View at Scopus
  106. N. M. Sawtell and R. L. Thompson, “Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia,” Journal of Virology, vol. 66, no. 4, pp. 2150–2156, 1992. View at Scopus
  107. S. Himmelein, A. J. St Leger, J. E. Knickelbein, A. Rowe, M. L. Freeman, and R. L. Hendricks, “Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia,” Herpesviridae, vol. 2, article 5, 2011. View at Publisher · View at Google Scholar
  108. R. H. Bonneau, K. M. Zimmerman, S. C. Ikeda, and B. C. Jones, “Differential effects of stress-induced adrenal function on components of the herpes simplex virus-specific memory cytotoxic T-lymphocyte response,” Journal of Neuroimmunology, vol. 82, no. 2, pp. 191–199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. J. T. Hunzeker, M. D. Elftman, J. C. Mellinger et al., “A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells,” Journal of Immunology, vol. 186, no. 1, pp. 183–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. M. D. Elftman, J. T. Hunzeker, J. C. Mellinger, R. H. Bonneau, C. C. Norbury, and M. E. Truckenmiller, “Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function,” Journal of Immunology, vol. 184, no. 4, pp. 1867–1875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. J. F. Sheridan, N. Feng, R. H. Bonneau, C. M. Allen, B. S. Huneycutt, and R. Glaser, “Restraint stress differentially affects anti-viral cellular and humoral immune responses in mice,” Journal of Neuroimmunology, vol. 31, no. 3, pp. 245–255, 1991. View at Publisher · View at Google Scholar · View at Scopus
  112. M. L. Freeman, B. S. Sheridan, R. H. Bonneau, and R. L. Hendricks, “Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections,” Journal of Immunology, vol. 179, no. 1, pp. 322–328, 2007. View at Scopus
  113. A. A. Chentoufi, X. Dervillez, G. Dasgupta et al., “The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells,” Viral Immunology, vol. 25, no. 3, pp. 204–215, 2012. View at Publisher · View at Google Scholar
  114. A. A. Chentoufi, E. Kritzer, M. V. Tran et al., “The herpes simplex virus 1 latency-associated transcript promotes functional exhaustion of virus-specific CD8+ T cells in latently infected trigeminal ganglia: a novel immune evasion mechanism,” Journal of Virology, vol. 85, no. 17, pp. 9127–9138, 2011. View at Publisher · View at Google Scholar
  115. T. Veiga-Parga, A. Suryawanshi, and B. T. Rouse, “Controlling viral immuno-inflammatory lesions by modulating aryl hydrocarbon receptor signaling,” PLoS Pathogens, vol. 7, no. 12, Article ID e1002427, 2011. View at Publisher · View at Google Scholar
  116. A. Suryawanshi, T. Veiga-Parga, N. K. Rajasagi et al., “Role of il-17 and th17 cells in herpes simplex virus-induced corneal immunopathology,” Journal of Immunology, vol. 187, no. 4, pp. 1919–1930, 2011. View at Publisher · View at Google Scholar
  117. P. B. J. Reddy, S. Sehrawat, A. Suryawanshi et al., “Influence of galectin-9/Tim-3 interaction on herpes simplex virus-1 latency,” Journal of Immunology, vol. 187, no. 11, pp. 5745–5755, 2011. View at Publisher · View at Google Scholar
  118. G. C. Perng, D. Esmaili, S. M. Slanina et al., “Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits,” Journal of Virology, vol. 75, no. 19, pp. 9018–9028, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Inman, G. C. Perng, G. Henderson et al., “Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture,” Journal of Virology, vol. 75, no. 8, pp. 3636–3646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. G. C. Perng, C. Jones, J. Ciacci-Zanella et al., “Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript,” Science, vol. 287, no. 5457, pp. 1500–1503, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. X. Jiang, A. A. Chentoufi, C. Hsiang et al., “The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing,” Journal of Virology, vol. 85, no. 5, pp. 2325–2332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. S. J. Allen, P. Hamrah, D. Gate et al., “The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1,” Journal of Virology, vol. 85, no. 9, pp. 4184–4197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. G. M. Frank, A. J. Lepisto, M. L. Freeman, B. S. Sheridan, T. L. Cherpes, and R. L. Hendricks, “Early CD4+ T cell help prevents partial CD8+ T cell exhaustion and promotes maintenance of herpes simplex virus 1 latency,” Journal of Immunology, vol. 184, no. 1, pp. 277–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Sehrawat, P. B. Reddy, N. Rajasagi, A. Suryawanshi, M. Hirashima, and B. T. Rouse, “Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response,” PLoS Pathogens, vol. 6, no. 5, Article ID e1000882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. E. J. Wherry, “T cell exhaustion,” Nature Immunology, vol. 12, no. 6, pp. 492–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. S. J. Allen, K. R. Mott, M. Zandian, and H. Ghiasi, “Immunization with different viral antigens alters the pattern of T cell exhaustion and latency in herpes simplex virus type 1-infected mice,” Journal of Virology, vol. 84, no. 23, pp. 12315–12324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. C. L. Day, D. E. Kaufmann, P. Kiepiela et al., “PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression,” Nature, vol. 443, no. 7109, pp. 350–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. K. Held, I. Eiglmeier, S. Himmelein et al., “Clonal expansions of CD8+ T cells in latently HSV-1-infected human trigeminal ganglia,” Journal of NeuroVirology, vol. 18, no. 1, pp. 62–68, 2012. View at Publisher · View at Google Scholar
  129. K. Held, A. Junker, K. Dornmair et al., “Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates,” Journal of Virology, vol. 85, no. 19, pp. 9680–9685, 2011. View at Publisher · View at Google Scholar
  130. K. Held, I. Eiglmeier, S. Himmelein et al., “Clonal expansions of CD8+ T cells in latently HSV-1-infected human trigeminal ganglia,” Journal of NeuroVirology, vol. 18, no. 1, pp. 62–68, 2012. View at Publisher · View at Google Scholar
  131. K. Held and T. Derfuss, “Control of HSV-1 latency in human trigeminal ganglia-current overview,” Journal for Neurovirology, vol. 17, no. 6, pp. 518–527, 2011. View at Publisher · View at Google Scholar
  132. V. Arbusow, T. Derfuss, K. Held et al., “Latency of herpes simplex virus type-1 in human geniculate and vestibular ganglia is associated with infiltration of CD8+ T cells,” Journal of medical virology, vol. 82, no. 11, pp. 1917–1920, 2010. View at Scopus
  133. M. van Velzen, J. D. Laman, A. KleinJan, A. Poot, A. D. M. E. Osterhaus, and G. M. G. M. Verjans, “Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype,” Journal of Immunology, vol. 183, no. 4, pp. 2456–2461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. B. S. Sheridan, T. L. Cherpes, J. Urban, P. Kalinski, and R. L. Hendricks, “Reevaluating the CD8 T-Cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes,” Journal of Virology, vol. 83, no. 5, pp. 2237–2245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. T. Liu, K. M. Khanna, X. Chen, D. J. Fink, and R. L. Hendricks, “CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons,” Journal of Experimental Medicine, vol. 191, no. 9, pp. 1459–1466, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. J. E. Knickelbein, K. M. Khanna, M. B. Yee, C. J. Baty, P. R. Kinchington, and R. L. Hendricks, “Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency,” Science, vol. 322, no. 5899, pp. 268–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Liu, K. M. Khanna, B. N. Carriere, and R. L. Hendricks, “Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons,” Journal of Virology, vol. 75, no. 22, pp. 11178–11184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Divito, T. L. Cherpes, and R. L. Hendricks, “A triple entente: virus, neurons, and CD8+ T cells maintain HSV-1 latency,” Immunologic Research, vol. 36, no. 1–3, pp. 119–126, 2006. View at Scopus
  139. K. M. Khanna, A. J. Lepisto, and R. L. Hendricks, “Immunity to latent viral infection: many skirmishes but few fatalities,” Trends in Immunology, vol. 25, no. 5, pp. 230–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. D. L. Rock, A. B. Nesburn, H. Ghiasi et al., “Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1,” Journal of Virology, vol. 61, no. 12, pp. 3820–3826, 1987. View at Scopus
  141. J. G. Stevens, E. K. Wagner, and G. B. Devi-Rao, “RNA complementary to a herpesvirus α gene mRNA is prominent in latently infected neurons,” Science, vol. 235, no. 4792, pp. 1056–1059, 1987. View at Scopus
  142. G. C. Perng, E. C. Dunkel, P. A. Geary et al., “The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency,” Journal of Virology, vol. 68, no. 12, pp. 8045–8055, 1994. View at Scopus
  143. M. D. Trousdale, I. Steiner, J. G. Spivack et al., “In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model,” Journal of Virology, vol. 65, no. 12, pp. 6989–6993, 1991. View at Scopus
  144. D. A. Leib, C. L. Bogard, M. Kosz-Vnenchak et al., “A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency,” Journal of Virology, vol. 63, no. 7, pp. 2893–2900, 1989. View at Scopus
  145. S. P. Deshpande, U. Kumaraguru, and B. T. Rouse, “Why do we lack an effective vaccine against herpes simplex virus infections?” Microbes and Infection, vol. 2, no. 8, pp. 973–978, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. P. Pivetti-Pezzi, M. Accorinti, R. A. M. Colabelli-Gisoldi, M. P. Pirraglia, and M. C. Sirianni, “Herpes simplex virus vaccine in recurrent herpetic ocular infection,” Cornea, vol. 18, no. 1, pp. 47–51, 1999. View at Scopus
  147. L. Corey, A. G. M. Langenberg, R. Ashley et al., “Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials,” The Journal of the American Medical Association, vol. 282, no. 4, pp. 331–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. P. R. Krause and S. E. Straus, “Herpesvirus vaccines. Development, controversies, and applications,” Infectious Disease Clinics of North America, vol. 13, no. 1, pp. 61–81, 1999. View at Publisher · View at Google Scholar
  149. J. I. Sin, V. Ayyavoo, J. Boyer, J. Kim, R. B. Ciccarelli, and D. B. Weiner, “Protective immune correlates can segregate by vaccine type in a murine herpes model system,” International Immunology, vol. 11, no. 11, pp. 1763–1773, 1999. View at Publisher · View at Google Scholar · View at Scopus
  150. H. M. Friedman, C. Hartley, L. Corey et al., “Immunologic strategies for herpes vaccination,” The Journal of the American Medical Association, vol. 283, no. 6, pp. 746–747, 2000.
  151. L. BenMohamed, S. L. Wechsler, and A. B. Nesburn, “Lipopeptide vaccines—yesterday, today, and tomorrow,” The Lancet Infectious Diseases, vol. 2, no. 7, pp. 425–431, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. D. M. Koelle and H. Ghiasi, “Prospects for developing an effective vaccine against ocular herpes simplex virus infection,” Current Eye Research, vol. 30, no. 11, pp. 929–942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. A. A. Chentoufi, X. Zhang, K. Lamberth et al., “HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D,” Journal of Immunology, vol. 180, no. 1, pp. 426–437, 2008. View at Scopus
  154. M. W. Russell, “Immunization for protection of the reproductive tract: a review,” American Journal of Reproductive Immunology, vol. 47, no. 5, pp. 265–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. R. Kaul, C. Pettengell, P. M. Sheth et al., “The genital tract immune milieu: an important determinant of HIV susceptibility and secondary transmission,” Journal of Reproductive Immunology, vol. 77, no. 1, pp. 32–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. V. MasCasullo, E. Fam, M. J. Keller, and B. C. Herold, “Role of mucosal immunity in preventing genital herpes infection,” Viral Immunology, vol. 18, no. 4, pp. 595–606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. G. N. Milligan, K. L. Dudley-McClain, C. F. Chu, and C. G. Young, “Efficacy of genital T cell responses to herpes simplex virus type 2 resulting from immunization of the nasal mucosa,” Virology, vol. 318, no. 2, pp. 507–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Kwant and K. L. Rosenthal, “Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2,” Vaccine, vol. 22, no. 23-24, pp. 3098–3104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. K. Hamajima, Y. Hoshino, K. Q. Xin, F. Hayashi, K. Tadokoro, and K. Okuda, “Systemic and mucosal immune responses in mice after rectal and vaginal immunization with HIV-DNA vaccine,” Clinical Immunology, vol. 102, no. 1, pp. 12–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. W. S. Gallichan and K. L. Rosenthal, “Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization,” Journal of Infectious Diseases, vol. 177, no. 5, pp. 1155–1161, 1998. View at Scopus
  161. D. M. Koelle, “Vaccines for herpes simplex virus infections,” Current Opinion in Investigational Drugs, vol. 7, no. 2, pp. 136–141, 2006. View at Scopus
  162. D. Bernstein, “Glycoprotein D adjuvant herpes simplex virus vaccine,” Expert Review of Vaccines, vol. 4, no. 5, pp. 615–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Hoshino, S. K. Dalai, K. Wang et al., “Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs,” Journal of Virology, vol. 79, no. 1, pp. 410–418, 2005.
  164. P. Bossi, “Genital herpes: epidemiology, transmission, clinic, asymptomatic viral excretion, impact on other sexually transmitted diseases, prevention, and treatment,” Annales de Dermatologie et de Venereologie, vol. 129, no. 4, pp. 477–493, 2002. View at Scopus
  165. K. Eriksson, L. Bellner, S. Görander et al., “CD4+ T-cell responses to herpes simplex virus type 2 (HSV-2) glycoprotein G are type specific and differ in symptomatic and asymptomatic HSV-2-infected individuals,” Journal of General Virology, vol. 85, no. 8, pp. 2139–2147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. C. L. Celum, “The interaction between herpes simplex virus and human immunodeficiency virus,” Herpes, vol. 11, supplement 1, pp. 36A–45A, 2004. View at Scopus
  167. C. Fayolle, E. Deriaud, and C. Leclerc, “In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help,” Journal of Immunology, vol. 147, no. 12, pp. 4069–4073, 1991. View at Scopus
  168. W. M. Kast and C. J. M. Melief, “In vivo efficacy of virus-derived peptides and virus-specific cytotoxic T lymphocytes,” Immunology Letters, vol. 30, no. 2, pp. 229–232, 1991. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Schulz, R. M. Zinkernagel, and H. Hengartner, “Peptide-induced antiviral protection by cytotoxic T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 3, pp. 991–993, 1991. View at Publisher · View at Google Scholar · View at Scopus
  170. I. B. Kastrup, S. Stevanovic, G. Arsequell et al., “Lectin purified human class I MHC-derived peptides: evidence for presentation of glycopeptides in vivo,” Tissue Antigens, vol. 56, no. 2, pp. 129–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  171. L. BenMohamed, R. Krishnan, J. Longmate et al., “Induction of CTL response by a minimal epitope vaccine in HLA A*0201/Dr1 transgenic mice: dependence on HLA class II restricted T(h) response,” Human Immunology, vol. 61, no. 8, pp. 764–779, 2000. View at Publisher · View at Google Scholar · View at Scopus
  172. L. BenMohamed, A. Thomas, M. Bossus et al., “High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules,” Vaccine, vol. 18, no. 25, pp. 2843–2855, 2000. View at Scopus
  173. P. Daubersies, A. W. Thomas, P. Millet et al., “Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3,” Nature Medicine, vol. 6, no. 11, pp. 1258–1263, 2000.
  174. A. B. Nesburn, R. L. Burke, H. Ghiasi, S. M. Slanina, and S. L. Wechsler, “Therapeutic periocular vaccination with a subunit vaccine induces higher levels of herpes simplex virus-specific tear secretory immunoglobulin A than systemic vaccination and provides protection against recurrent spontaneous ocular shedding of virus in latently infected rabbits,” Virology, vol. 252, no. 1, pp. 200–209, 1998. View at Publisher · View at Google Scholar · View at Scopus
  175. A. B. Nesburn, R. L. Burke, H. Gbiasi, S. M. Slanina, and S. L. Wechsler, “A therapeutic vaccine that reduces recurrent herpes simplex virus type 1 corneal disease,” Investigative Ophthalmology and Visual Science, vol. 39, no. 7, pp. 1163–1170, 1998. View at Scopus
  176. A. B. Nesburn, S. Slanina, R. L. Burke, H. Ghiasi, S. Bahri, and S. L. Wechsler, “Local periocular vaccination protects against eye disease more effectively than systemic vaccination following primary ocular herpes simplex virus infection in rabbits,” Journal of Virology, vol. 72, no. 10, pp. 7715–7721, 1998. View at Scopus
  177. M. F. Powell, D. J. Eastman, A. Lim et al., “Effect of adjuvants on immunogenicity of MN recombinant glycoprotein 120 in guinea pigs,” AIDS Research and Human Retroviruses, vol. 11, no. 2, pp. 203–209, 1995. View at Scopus
  178. R. K. Gupta and G. R. Siber, “Adjuvants for human vaccines. Current status, problems and future prospects,” Vaccine, vol. 13, no. 14, pp. 1263–1276, 1995. View at Publisher · View at Google Scholar · View at Scopus
  179. M. Andrieu, E. Loing, J.-F. Desoutter et al., “Endocytosis of an HIV-derived lipopeptide into human dendritic cells followed by class I-restricted CD8+ T lymphocyte activation,” European Journal of Immunology, vol. 30, no. 11, pp. 3256–3265, 2000. View at Publisher · View at Google Scholar
  180. L. BenMohamed, H. Gras-Masse, A. Tartar et al., “Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees,” European Journal of Immunology, vol. 27, no. 5, pp. 1242–1253, 1997. View at Scopus
  181. I. Bourgault, F. Chirat, A. Tartar, J. P. Levy, J. G. Guillet, and A. Venet, “Simian immunodeficiency virus as a model for vaccination against HIV: induction in rhesus macaques of GAG- or NEF-specific cytotoxic T lymphocytes by lipopeptides,” Journal of Immunology, vol. 152, no. 5, pp. 2530–2537, 1994. View at Scopus
  182. H. Gahéry-Ségard, G. Pialoux, B. Charmeteau et al., “Multiepitopic B- and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine,” Journal of Virology, vol. 74, no. 4, pp. 1694–1703, 2000. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Gras-Masse, “Chemoselective ligation and antigen vectorization,” Biologicals, vol. 29, no. 3-4, pp. 183–188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  184. H. Gras-Masse, “Single-chain lipopeptide vaccines for the induction of virus-specific cytotoxic T cell responses in randomly selected populations,” Molecular Immunology, vol. 38, no. 6, pp. 423–431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  185. B. D. Livingston, C. Crimi, H. Grey et al., “The hepatitis B virus-specific CTL responses induced in humans by lipopeptide vaccination are comparable to those elicited by acute viral infection,” Journal of Immunology, vol. 159, no. 3, pp. 1383–1392, 1997. View at Scopus
  186. F. Martinon, H. Gras-Masse, C. Boutillon et al., “Immunization of mice with lipopeptides bypasses the prerequisite for adjuvant: immune response of BALB/c mice to human immunodeficiency virus envelope glycoprotein,” Journal of Immunology, vol. 149, no. 10, pp. 3416–3422, 1992. View at Scopus
  187. G. Pialoux, H. Gahéry-Ségard, S. Sermet et al., “Lipopeptides induce cell-mediated anti-HIV immune responses in seronegative volunteers,” AIDS, vol. 15, no. 10, pp. 1239–1249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  188. J. P. Sauzet, B. Deprez, F. Martinon, J. G. Guillet, H. Gras-Masse, and E. Gomard, “Long-lasting anti viral cytotoxic T lymphocytes induced in vivo with chimeric-multirestricted lipopeptides,” Vaccine, vol. 13, no. 14, pp. 1339–1345, 1995. View at Publisher · View at Google Scholar · View at Scopus
  189. H. Schild, K. Deres, K. H. Wiesmuller, G. Jung, and H. G. Rammensee, “Efficiency of peptides and lipopeptides for in vivo priming of virus-specific cytotoxic T cells,” European Journal of Immunology, vol. 21, no. 11, pp. 2649–2654, 1991. View at Scopus
  190. A. Seth, Y. Yasutomi, H. Jacoby et al., “Evaluation of a lipopeptide immunogen as a therapeutic in HIV type 1-seropositive individuals,” AIDS Research and Human Retroviruses, vol. 16, no. 4, pp. 337–343, 2000. View at Publisher · View at Google Scholar · View at Scopus
  191. I. Tsunoda, A. Sette, R. S. Fujinami et al., “Lipopeptide particles as the immunologically active component of CTL inducing vaccines,” Vaccine, vol. 17, no. 7-8, pp. 675–685, 1999. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Vitiello, G. Ishioka, H. M. Grey et al., “Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans,” Journal of Clinical Investigation, vol. 95, no. 1, pp. 341–349, 1995. View at Scopus
  193. D. J. Diamond, J. York, J. Y. Sun, C. L. Wright, and S. J. Forman, “Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection,” Blood, vol. 90, no. 5, pp. 1751–1767, 1997. View at Scopus
  194. L. BenMohamed, A. Thomas, and P. Druilhe, “Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides,” Infection and Immunity, vol. 72, no. 8, pp. 4376–4384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  195. O. Launay, C. Durier, C. Desaint et al., “Cellular immune responses induced with dose-sparing intradermal administration of HIV vaccine to HIV-uninfected volunteers in the ANRS VAC16 trial,” PloS ONE, vol. 2, no. 1, article e725, 2007. View at Scopus
  196. B. Livingston, C. Crimi, M. Newman et al., “A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes,” Journal of Immunology, vol. 168, no. 11, pp. 5499–5506, 2002. View at Scopus
  197. J. Alexander, C. Oseroff, C. Dahlberg et al., “A decaepitope polypeptide primes for multiple CD8+ IFN-γ and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery,” Journal of Immunology, vol. 168, no. 12, pp. 6189–6198, 2002. View at Scopus
  198. I. M. Belyakov and J. A. Berzofsky, “Immunobiology of mucosal HIV infection and the basis for development of a new generation of mucosal AIDS vaccines,” Immunity, vol. 20, no. 3, pp. 247–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  199. J. A. Berzofsky, J. D. Ahlers, M. A. Derby, C. D. Pendleton, T. Arichi, and I. M. Belyakov, “Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections,” Immunological Reviews, vol. 170, pp. 151–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. M. M. Gherardi, E. Pérez-Jiménez, J. L. Nájera, and M. Esteban, “Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus ankara boost immunization schedule,” Journal of Immunology, vol. 172, no. 10, pp. 6209–6220, 2004. View at Scopus
  201. S. Tengvall, A. Lundqvist, R. J. Eisenberg, G. H. Cohen, and A. M. Harandi, “Mucosal administration of CpG oligodeoxynucleotide elicits strong CC and CXC chemokine responses in the vagina and serves as a potent Th1-tilting adjuvant for recombinant gD2 protein vaccination against genital herpes,” Journal of Virology, vol. 80, no. 11, pp. 5283–5291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. K. L. Rosenthal and W. S. Gallichan, “Challenges for vaccination against sexually-transmitted diseases: induction and long-term maintenance of mucosal immune responses in the female genital tract,” Seminars in Immunology, vol. 9, no. 5, pp. 303–314, 1997. View at Publisher · View at Google Scholar · View at Scopus
  203. L. Corey, “The current trend in genital herpes: progress in prevention,” Sexually Transmitted Diseases, vol. 21, no. 2, pp. S38–S44, 1994. View at Scopus
  204. S. E. Straus, A. Wald, R. G. Kost et al., “Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial,” Journal of Infectious Diseases, vol. 176, no. 5, pp. 1129–1134, 1997. View at Scopus
  205. M. Zheng, C. D. Conrady, J. M. Ward, K. M. Bryant-Hudson, and D. J. J. Carr, “Comparison of the host immune response to herpes simplex virus 1 (HSV-1) and HSV-2 at two different mucosal sites,” Journal of Virology, vol. 86, no. 13, pp. 7454–7458, 2012. View at Publisher · View at Google Scholar
  206. R. L. Hendricks, R. J. Epstein, and T. Tumpey, “The effect of cellular immune tolerance to HSV-1 antigens on the immunopathology fo HSV-1 keratitis,” Investigative Ophthalmology and Visual Science, vol. 30, no. 1, pp. 105–115, 1989. View at Scopus
  207. T. M. Tumpey, S. H. Chen, J. E. Oakes, and R. N. Lausch, “Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea,” Journal of Virology, vol. 70, no. 2, pp. 898–904, 1996. View at Scopus
  208. C. Shimeld, J. L. Whiteland, S. M. Nicholls, D. L. Easty, and T. J. Hill, “Immune cell infiltration in corneas of mice with recurrent herpes simplex virus disease,” Journal of General Virology, vol. 77, no. 5, pp. 977–985, 1996. View at Scopus
  209. R. L. Hendricks and T. M. Tumpey, “Concurrent regeneration of T lymphocytes and susceptibility to HSV-1 corneal stromal disease,” Current Eye Research, vol. 10, supplement, pp. 47–53, 1991. View at Scopus
  210. R. L. Hendricks, P. C. Weber, J. L. Taylor, A. Koumbis, T. M. Tumpey, and J. C. Glorioso, “Endogenously produced interferon α protects mice from herpes simplex virus type 1 corneal disease,” Journal of General Virology, vol. 72, no. 7, pp. 1601–1610, 1991. View at Scopus
  211. C. K. Newell, S. Martin, D. Sendele, C. M. Mercadal, and B. T. Rouse, “Herpes simplex virus-induced stromal keratitis: role of T-lymphocyte subsets in immunopathology,” Journal of Virology, vol. 63, no. 2, pp. 769–775, 1989. View at Scopus
  212. J. Thomas, S. Gangappa, S. Kanangat, and B. T. Rouse, “On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis,” Journal of Immunology, vol. 158, no. 3, pp. 1383–1391, 1997. View at Scopus
  213. J. F. Metcalf, D. S. Hamilton, and R. W. Reichert, “Herpetic keratitis in athymic (nude) mice,” Infection and Immunity, vol. 26, no. 3, pp. 1164–1171, 1979. View at Scopus
  214. R. G. Russell, M. P. Nasisse, H. S. Larsen, and B. T. Rouse, “Role of T-lymphocytes in the pathogenesis of herpetic stromal keratitis,” Investigative Ophthalmology and Visual Science, vol. 25, no. 8, pp. 938–944, 1984. View at Scopus
  215. R. L. Hendricks, M. Janowicz, and T. M. Tumpey, “Critical role of corneal Langerhans cells in the CD4- but not CD8-mediated immunopathology in herpes simplex virus-1-infected mouse corneas,” Journal of Immunology, vol. 148, no. 8, pp. 2522–2529, 1992. View at Scopus
  216. R. L. Hendricks, T. M. Tumpey, and A. Finnegan, “IFN-γ and IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice,” Journal of Immunology, vol. 149, no. 9, pp. 3023–3028, 1992. View at Scopus
  217. M. G. Niemialtowski and B. T. Rouse, “Phenotypic and functional studies on ocular T cells during herpetic infections of the eye,” Journal of Immunology, vol. 148, no. 6, pp. 1864–1870, 1992. View at Scopus
  218. M. G. Niemialtowski and B. T. Rouse, “Predominance of Th1 cells in ocular tissues during herpetic stromal keratitis,” Journal of Immunology, vol. 149, no. 9, pp. 3035–3039, 1992. View at Scopus
  219. Q. Tang, W. Chen, and R. L. Hendricks, “Proinflammatory functions of IL-2 in herpes simplex virus corneal infection,” Journal of Immunology, vol. 158, no. 3, pp. 1275–1283, 1997. View at Scopus
  220. Q. Tang and R. L. Hendricks, “Interferon γ regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1435–1447, 1996. View at Publisher · View at Google Scholar · View at Scopus
  221. H. Chen and R. L. Hendricks, “B7 costimulatory requirements of T cells at an inflammatory site,” Journal of Immunology, vol. 160, no. 10, pp. 5045–5052, 1998. View at Scopus
  222. S. Jayaraman, A. Heiligenhaus, A. Rodriguez, S. Soukiasian, M. E. Dorf, and C. S. Foster, “Exacerbation of murine herpes simplex virus-mediated stromal keratitis by Th2 type T cells,” Journal of Immunology, vol. 151, no. 10, pp. 5777–5789, 1993. View at Scopus
  223. T. M. Tumpey, H. Cheng, X. T. Yan, J. E. Oakes, and R. N. Lausch, “Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10,” Journal of Leukocyte Biology, vol. 63, no. 4, pp. 486–492, 1998. View at Scopus
  224. T. M. Tumpey, V. M. Elner, S. H. Chen, J. E. Oakes, and R. N. Lausch, “Interleukin-10 treatment can suppress stromal keratitis induced by herpes simplex virus type 1,” Journal of Immunology, vol. 153, no. 5, pp. 2258–2265, 1994. View at Scopus
  225. S. J. Divito and R. L. Hendricks, “Activated inflammatory infiltrate in HSV-1-infected corneas without herpes stromal keratitis,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1488–1495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  226. D. M. Koelle, S. N. Reymond, H. Chen et al., “Tegument-specific, virus-reactive CD4 T cells localize to the cornea in herpes simplex virus interstitial keratitis in humans,” Journal of Virology, vol. 74, no. 23, pp. 10930–10938, 2000. View at Publisher · View at Google Scholar · View at Scopus
  227. G. M. G. M. Verjans, L. Remeijer, C. M. Mooy, and A. D. M. E. Osterhaus, “Herpes simplex virus-specific T cells infiltrate the cornea of patients with herpetic stromal keratitis: no evidence for autoreactive T cells,” Investigative Ophthalmology and Visual Science, vol. 41, no. 9, pp. 2607–2612, 2000. View at Scopus
  228. G. M. G. R. Verjans, L. Remeijer, R. S. van Binnendijk et al., “Identification and characterization of herpes simplex virus-specific CD4+ T cells in corneas of herpetic stromal keratitis patients,” Journal of Infectious Diseases, vol. 177, no. 2, pp. 484–488, 1998. View at Scopus
  229. J. Maertzdorf, A. D. M. E. Osterhaus, and G. M. G. M. Verjans, “IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts,” Journal of Immunology, vol. 169, no. 10, pp. 5897–5903, 2002. View at Scopus
  230. A. Wald, L. Corey, R. Cone, A. Hobson, G. Davis, and J. Zeh, “Frequent genital herpes simplex virus 2 shedding in immunocompetent women: effect of acyclovir treatment,” Journal of Clinical Investigation, vol. 99, no. 5, pp. 1092–1097, 1997. View at Scopus
  231. B. Knaup, S. Schünemann, and M. H. Wolff, “Subclinical reactivation of herpes simplex virus type 1 in the oral cavity,” Oral Microbiology and Immunology, vol. 15, no. 5, pp. 281–283, 2000. View at Scopus
  232. A. Wald, J. Zeh, S. Selke, T. Warren, R. Ashley, and L. Corey, “Genital shedding of herpes simplex virus among men,” Journal of Infectious Diseases, vol. 186, supplement 1, pp. S34–S39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  233. J. F. Leigh, N. Acharya, V. Cevallos, and T. P. Margolis, “Does asymptomatic shedding of herpes simplex virus on the ocular surface lead to false-positive diagnostic PCR results?” British Journal of Ophthalmology, vol. 92, no. 3, pp. 435–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  234. M. R. Hobbs, B. B. Jones, B. E. Otterud, M. Leppert, and J. D. Kriesel, “Identification of a herpes simplex labialis susceptibility region on human chromosome 21,” Journal of Infectious Diseases, vol. 197, no. 3, pp. 340–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  235. W. E. Stamm, H. H. Handsfield, A. M. Rompalo, R. L. Ashley, P. L. Roberts, and L. Corey, “The association between genital ulcer disease and acquisition of HIV infection in homosexual men,” The Journal of the American Medical Association, vol. 260, no. 10, pp. 1429–1433, 1988. View at Scopus
  236. N. Hosken, P. McGowan, A. Meier et al., “Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes,” Journal of Virology, vol. 80, no. 11, pp. 5509–5515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  237. X. Zhang, F. A. Castelli, X. Zhu, M. Wu, B. Maillère, and L. BenMohamed, “Gender-dependent HLA-DR-restricted epitopes identified from herpes simplex virus type 1 glycoprotein D,” Clinical and Vaccine Immunology, vol. 15, no. 9, pp. 1436–1449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  238. M. Gierynska, U. Kumaraguru, S. K. Eo, S. Lee, A. Krieg, and B. T. Rouse, “Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes,” Journal of Virology, vol. 76, no. 13, pp. 6568–6576, 2002. View at Publisher · View at Google Scholar · View at Scopus
  239. C. M. Posavad, D. M. Koelle, M. F. Shaughnessy, and L. Corey, “Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus-specific CD8+ cytotoxic T lymphocyte responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10289–10294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  240. D. M. Koelle, C. M. Posavad, G. R. Barnum, M. L. Johnson, J. M. Frank, and L. Corey, “Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes,” Journal of Clinical Investigation, vol. 101, no. 7, pp. 1500–1508, 1998. View at Publisher · View at Google Scholar
  241. F. N. Toka, C. D. Pack, and B. T. Rouse, “Molecular adjuvants for mucosal immunity,” Immunological Reviews, vol. 199, pp. 100–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  242. P. Brandtzaeg and R. Pabst, “Let's go mucosal: communication on slippery ground,” Trends in Immunology, vol. 25, no. 11, pp. 570–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  243. J. P. Bouvet, N. Decroix, and P. Pamonsinlapatham, “Stimulation of local antibody production: parenteral or mucosal vaccination?” Trends in Immunology, vol. 23, no. 4, pp. 209–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  244. K. Prabhakaran, B. S. Sheridan, P. R. Kinchington et al., “Sensory neurons regulate the effector functions of CD8+ T cells in controlling HSV-1 latency ex vivo,” Immunity, vol. 23, no. 5, pp. 515–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  245. A. A. Chentoufi, G. Dasgupta, N. D. Christensen et al., “A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes,” Journal of Immunology, vol. 184, no. 5, pp. 2561–2571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  246. K. R. Mott, C. J. Bresee, S. J. Allen, L. BenMohamed, S. L. Wechsler, and H. Ghiasi, “Level of herpes simplex virus type 1 latency correlates with severity of corneal scarring and exhaustion of CD8+ T cells in trigeminal ganglia of latently infected mice,” Journal of Virology, vol. 83, no. 5, pp. 2246–2254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  247. G. Dasgupta, A. A. Chentoufi, A. B. Nesburn, S. L. Wechsler, and L. BenMohamed, “New concepts in herpes simplex virus vaccine development: notes from the battlefield,” Expert Review of Vaccines, vol. 8, no. 8, pp. 1023–1035, 2009. View at Publisher · View at Google Scholar · View at Scopus