About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 158287, 7 pages
http://dx.doi.org/10.1155/2012/158287
Research Article

TLR2 in Pleural Fluid Is Modulated by Talc Particles during Pleurodesis

1Department of Clinical Immunology and Allergy, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University in Prague, Sokolska Street 581, 500 05 Hradec Kralove, Czech Republic
2Department of Cardiac Surgery, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University in Prague, Sokolska Street 581, 500 05 Hradec Kralove, Czech Republic

Received 27 September 2012; Revised 14 November 2012; Accepted 14 November 2012

Academic Editor: Bernhard Fleischer

Copyright © 2012 Karolina Jankovicova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Lombardi, F. Zustovich, M. O. Nicoletto, M. Donach, G. Artioli, and D. Pastorelli, “Diagnosis and treatment of malignant pleural effusion: a systematic literature review and new approaches,” American Journal of Clinical Oncology, vol. 33, no. 4, pp. 420–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Idris, N. Ranaweera, and D. Laws, “Investigation of pleural effusions,” Acute Medicine, vol. 10, no. 4, pp. 216–220, 2011.
  3. J. M. Porcel and R. W. Light, “Diagnostic approach to pleural effusion in adults,” American Family Physician, vol. 73, no. 7, pp. 1211–1220, 2006. View at Scopus
  4. M. A. Jantz and V. B. Antony, “Pathophysiology of the pleura,” Respiration, vol. 75, no. 2, pp. 121–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. T. Huggins, P. Doelken, and S. A. Sahn, “The unexpandable lung,” F1000 Medicine Reports, vol. 2, no. 1, p. 77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Porcel, “Pearls and myths in pleural fluid analysis,” Respirology, vol. 16, no. 1, pp. 44–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Uzbeck, F. A. Almeida, M. G. Sarkiss et al., “Management of malignant pleural effusions,” Advances in Therapy, vol. 27, no. 6, pp. 334–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Rodriguez-Panadero and A. Montes-Worboys, “Mechanisms of pleurodesis,” Respiration, vol. 83, no. 2, pp. 91–98, 2012. View at Publisher · View at Google Scholar
  9. J. P. Janssen, G. Collier, P. Astoul et al., “Safety of pleurodesis with talc poudrage in malignant pleural effusion: a prospective cohort study,” The Lancet, vol. 369, no. 9572, pp. 1535–1539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. B. Antony, N. Nasreen, K. A. Mohammed et al., “Talc pleurodesis: basic fibroblast growth factor mediates pleural fibrosis,” Chest, vol. 126, no. 5, pp. 1522–1528, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. van den Heuvel, H. J. M. Smit, S. B. Barbierato, C. E. G. Havenith, R. H. J. Beelen, and P. E. Postmus, “Talc-induced inflammation in the pleural cavity,” European Respiratory Journal, vol. 12, no. 6, pp. 1419–1423, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. C. Gary Lee, D. Melkerneker, P. J. Thompson, R. W. Light, and K. B. Lane, “Transforming growth factor β induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 1, pp. 88–94, 2002. View at Scopus
  13. N. Nasreen, D. L. Hartman, K. A. Mohammed, and V. B. Antony, “Talc-induced expression of C-C and C-X-C chemokines and intercellular adhesion molecule-1 in mesothelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 971–978, 1998. View at Scopus
  14. A. Montes-Worboys, J. A. Rodriguez-Portal, E. Arellano-Orden, J. Digón-Pereiras, and F. Rodriguez-Panadero, “Interleukin-8 activates coagulation and correlates with survival after talc pleurodesis,” European Respiratory Journal, vol. 35, no. 1, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Marchi, F. S. Vargas, M. M. Acencio, L. Antonangelo, E. H. Genofre, and L. R. Teixeira, “Evidence that mesothelial cells regulate the acute inflammatory response in talc pleurodesis,” European Respiratory Journal, vol. 28, no. 5, pp. 929–932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. P. Acencio, F. S. Vargas, E. Marchi et al., “Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis,” Lung, vol. 185, no. 6, pp. 343–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Idell, “The pathogenesis of pleural space loculation and fibrosis,” Current Opinion in Pulmonary Medicine, vol. 14, no. 4, pp. 310–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Takeda and S. Akira, “Toll-like receptors in innate immunity,” International Immunology, vol. 17, no. 1, pp. 1–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Erridge, “Endogenous ligands of TLR2 and TLR4: agonists or assistants?” Journal of Leukocyte Biology, vol. 87, no. 6, pp. 989–999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Piccinini and K. S. Midwood, “DAMPening inflammation by modulating TLR signalling,” Mediators of Inflammation, vol. 2010, Article ID 672395, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. C. Tyan, H. Y. Wu, W. C. Su, P. W. Chen, and P. C. Liao, “Proteomic analysis of human pleural effusion,” Proteomics, vol. 5, no. 4, pp. 1062–1074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. K. Mayer, “Direct lymphatic connections from the lower lobes of the lung to the abdomen,” The Journal of Thoracic Surgery, vol. 35, no. 6, pp. 726–733, 1958.
  23. M. Kaczmarek, A. Nowicka, M. Kozłowska, J. Zurawski, H. Batura-Gabryel, and J. Sikora, “Evaluation of the phenotype pattern of macrophages isolated from malignant and non-malignant pleural effusions,” Tumor Biology, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Zahid, T. Routledge, A. Bille, and M. Scarci, “Best evidence topic-thoracic oncologic: what is the best treatment for malignant pleural effusions?” Interactive Cardiovascular and Thoracic Surgery, vol. 12, no. 5, pp. 818–823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Borrello, C. Nicolò, G. Delogu, F. Pandolfi, and F. Ria, “TLR2: a crossroads between infections and autoimmunity?” International Journal of Immunopathology and Pharmacology, vol. 24, no. 3, pp. 549–556, 2011.
  26. J. Fan, “TLR cross-talk mechanism of hemorrhagic shock-primed pulmonary neutrophil infiltration,” The Open Critical Care Medicine Journal, vol. 2, pp. 1–8, 2010.
  27. X. Chen, M. Zhang, X. Zhu et al., “Engagement of toll-like receptor 2 on CD4+ T cells facilitates local immune responses in patients with tuberculous pleurisy,” Journal of Infectious Diseases, vol. 200, no. 3, pp. 399–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Hussain, N. Nasreen, Y. Lai, B. F. Bellew, V. B. Antony, and K. A. Mohammed, “Innate immune responses in murine pleural mesothelial cells: toll-like receptor-2 dependent induction of β-defensin-2 by staphylococcal peptidoglycan,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp. L461–L470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. C. Chang, C. C. Hua, C. M. Chu, B. Y. Chiang, H. J. Chen, and C. C. Yu, “Differential mRNA expression of Toll-like receptors and their adaptors in pleural effusions,” Respirology, vol. 14, no. 8, pp. 1194–1199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. B. Yang, K. Q. Xie, J. M. Deng, and S. M. Qin, “Expression of soluble toll-like receptors in pleural effusions,” Chinese Medical Journal, vol. 123, no. 16, pp. 2225–2230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Fan, M. Xiang, and J. Fan, “Association of toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury,” Mediators of Inflammation, vol. 2010, Article ID 916425, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. N. Lambrecht, M. Kool, M. A. Willart, and H. Hammad, “Mechanism of action of clinically approved adjuvants,” Current Opinion in Immunology, vol. 21, no. 1, pp. 23–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. R. Razonable, M. Henault, and C. V. Paya, “Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines,” Toxicology and Applied Pharmacology, vol. 210, no. 3, pp. 181–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Radic, I. Vucak, J. Milosevic, A. Marusic, S. Vukicevic, and M. Marusic, “Immunosuppression induced by talc granulomatosis in the rat,” Clinical and Experimental Immunology, vol. 73, no. 2, pp. 316–321, 1988. View at Scopus
  35. R. Davies, J. W. Skidmore, D. M. Griffiths, and C. B. Moncrieff, “Cytotoxicity of talc for macrophages in vitro,” Food and Chemical Toxicology, vol. 21, no. 2, pp. 201–207, 1983. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Hoffeld, “Inhibition of lymphocyte proliferation and antibody production in vitro by silica, talc, Bentonite or Corynebacterium parvum: involvement of peroxidative processes,” European Journal of Immunology, vol. 13, no. 5, pp. 364–369, 1983. View at Scopus
  37. T. H. Flo, O. Halaas, S. Torp et al., “Differential expression of Toll-like receptor 2 in human cells,” Journal of Leukocyte Biology, vol. 69, no. 3, pp. 474–481, 2001. View at Scopus
  38. M. J. Acorci-Valério, A. P. Bordon-Graciani, L. A. Dias-Melicio, M. de Assis Golim, E. Nakaira-Takahagi, and A. M. de Campos Soares, “Role of TLR2 and TLR4 in human neutrophil functions against paracoccidioides brasiliensis,” Scandinavian Journal of Immunology, vol. 71, no. 2, pp. 99–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Hidaka and K. Fukuzawa, “Down-modulation of toll-like receptor 2 expression on granulocytes and suppression of interleukin-8 production due to in vitro treatment with cellulose acetate beads,” Therapeutic Apheresis and Dialysis, vol. 15, no. 6, pp. 572–578, 2011. View at Publisher · View at Google Scholar
  40. J. Krejsek, P. Kunes, M. Kolackova et al., “Expression of Toll-like receptors 2 and 4 on innate immunity cells modulated by cardiac surgical operation,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68, no. 8, pp. 749–758, 2008. View at Publisher · View at Google Scholar · View at Scopus