About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 187080, 12 pages
http://dx.doi.org/10.1155/2012/187080
Research Article

Dual Functions of the C5a Receptor as a Connector for the K562 Erythroblast-Like Cell-THP-1 Macrophage-Like Cell Island and as a Sensor for the Differentiation of the K562 Erythroblast-Like Cell during Haemin-Induced Erythropoiesis

Department of Molecular Pathology, Faculty of Life Science, Kumamoto University Graduate School, Honjyo 1-1-1, Chuou-ku, Kumamoto 860-8556, Japan

Received 4 July 2012; Revised 18 October 2012; Accepted 11 November 2012

Academic Editor: Daniel Rittirsch

Copyright © 2012 Hiroshi Nishiura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Bigas and L. Espinosa, “Hematopoietic stem cells: to be or Notch to be,” Blood, vol. 119, pp. 3226–3235, 2012.
  2. J. R. Hunt, C. B. Martin, and B. K. Martin, “Transcriptional regulation of the murine C5a receptor gene: NF-Y is required for basal and LPS induced expression in macrophages and endothelial cells,” Molecular Immunology, vol. 42, no. 11, pp. 1405–1415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. N. Monk, A. M. Scola, P. Madala, and D. P. Fairlie, “Function, structure and therapeutic potential of complement C5a receptors,” British Journal of Pharmacology, vol. 152, no. 4, pp. 429–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Nishiura, R. Zhao, and T. Yamamoto, “The role of the ribosomal protein S19 C-terminus in altering the chemotaxis of leucocytes by causing functional differences in the C5a receptor response,” The Journal of Biochemistry, vol. 150, pp. 271–277, 2011.
  5. M. C. Perianayagam, V. S. Balakrishnan, B. J. G. Pereira, and B. L. Jaber, “C5a delays apoptosis of human neutrophils via an extracellular signal-regulated kinase and Bad-mediated signalling pathway,” European Journal of Clinical Investigation, vol. 34, no. 1, pp. 50–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Nishiura, K. Tokita, Y. Li et al., “The role of the ribosomal protein S19 C-terminus in Gi protein-dependent alternative activation of p38 MAP kinase via the C5a receptor in HMC-1 cells,” Apoptosis, vol. 15, no. 8, pp. 966–981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Testa, “Apoptotic mechanisms in the control of erythropoiesis,” Leukemia, vol. 18, no. 7, pp. 1176–1199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Kapur, R. Cooper, L. Zhang, and D. A. Williams, “Cross-talk between α4β1/α5β1 and c-Kit results in opposing effect on growth and survival of hematopoietic cells via the activation of focal adhesion kinase, mitogen-activated protein kinase, and Akt signaling pathways,” Blood, vol. 97, no. 7, pp. 1975–1981, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. S. Moore, D. C. Dorn, J. J. Schuringa, K. Y. Chung, and G. Morrone, “Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells,” Experimental Hematology, vol. 35, no. 4, pp. 105–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Marzo, A. Lavorgna, G. Coluzzi et al., “Erythropoietin in heart and vessels: focus on transcription and signalling pathways,” Journal of Thrombosis and Thrombolysis, vol. 26, no. 3, pp. 183–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Fuentes-Prior and G. S. Salvesen, “The protein structures that shape caspase activity, specificity, activation and inhibition,” Biochemical Journal, vol. 384, no. 2, pp. 201–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. E. Bredesen, P. Mehlen, and S. Rabizadeh, “Receptors that mediate cellular dependence,” Cell Death and Differentiation, vol. 12, no. 8, pp. 1031–1043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Majka, A. Janowska-Wieczorek, J. Ratajczak et al., “Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner,” Blood, vol. 97, no. 10, pp. 3075–3085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Lipton and S. R. Ellis, “Diamond Blackfan anemia 2008-2009: broadening the scope of ribosome biogenesis disorders,” Current Opinion in Pediatrics, vol. 22, no. 1, pp. 12–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Flygare, T. Kiefer, K. Miyake et al., “Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond-Blackfan anemia,” Blood, vol. 105, no. 12, pp. 4627–4634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Y. Huang, Y. Y. Kuo, J. S. Lai, Y. Suzuki, S. Sugano, and Z. F. Chang, “GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene,” Nucleic Acids Research, vol. 32, no. 13, pp. 3935–3946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Fujiwara, H. Harigae, Y. Okitsu et al., “Expression analyses and transcriptional regulation of mouse nucleolar spindle-associated protein gene in erythroid cells: essential role of NF-Y,” British Journal of Haematology, vol. 135, no. 4, pp. 583–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. W. Y. Chong, M. J. Chen, E. S. C. Koay et al., “Annexin A3 is associated with cell death in lactacystin-mediated neuronal injury,” Neuroscience Letters, vol. 485, no. 2, pp. 129–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Rosenbaum, S. Kreft, J. Etich et al., “Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif,” The Journal of Biological Chemistry, vol. 286, no. 7, pp. 5708–5716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Nishiura, J. Chen, Y. Ota et al., “Base of molecular mimicry between human ribosomal protein S19 dimer and human C5a anaphylatoxin,” International Immunopharmacology, vol. 10, no. 12, pp. 1541–1547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Honma, J. Okabe-Kado, M. Hozumi, Y. Uehara, and S. Mizuno, “Induction of erythroid differentiation of K562 human leukemic cells by herbimycin A, an inhibitor of tyrosine kinase activity,” Cancer Research, vol. 49, no. 2, pp. 331–334, 1989. View at Scopus
  22. Y. H. Tan, K. H. Lee, T. Lin et al., “Cytotoxicity and proteomics analyses of OSU03013 in lung cancer,” Clinical Cancer Research, vol. 14, no. 6, pp. 1823–1830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Nishiura, H. Nonaka, I. S. Revollo et al., “Pro- and anti-apoptotic dual functions of the C5a receptor: involvement of regulator of G protein signaling 3 and extracellular signal-regulated kinase,” Laboratory Investigation, vol. 89, no. 6, pp. 676–694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. De Gassart, C. Géminard, B. Février, G. Raposo, and M. Vidal, “Lipid raft-associated protein sorting in exosomes,” Blood, vol. 102, no. 13, pp. 4336–4344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Lang, C. Birka, S. Myssina et al., “Erythrocyte ion channels in regulation of apoptosis,” Advances in Experimental Medicine and Biology, vol. 559, pp. 211–217, 2005. View at Scopus
  26. H. C. Pant, M. Virmani, and P. E. Gallant, “Calcium-induced proteolysis of spectrin and band 3 protein in rat erythrocyte membranes,” Biochemical and Biophysical Research Communications, vol. 117, no. 2, pp. 372–377, 1983. View at Scopus
  27. P. Yan, A. Nagasawa, H. Uosaki et al., “Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 379, no. 1, pp. 115–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Rzymski, M. Milani, D. C. Singleton, and A. L. Harris, “Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia,” Cell Cycle, vol. 8, no. 23, pp. 3838–3847, 2009. View at Scopus
  29. R. E. Griffiths, S. Kupzig, N. Cogan et al., “The ins and outs of human reticulocyte maturation: autophagy and the endosome/exosome pathway,” Autophagy, vol. 8, no. 7, pp. 1150–1151, 2012. View at Publisher · View at Google Scholar
  30. G. Keerthivasan, S. Small, H. Liu, A. Wickrema, and J. D. Crispino, “Vesicle trafficking plays a novel role in erythroblast enucleation,” Blood, vol. 116, no. 17, pp. 3331–3340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Shibuya, M. Shiokawa, H. Nishiura et al., “Identification of receptor-binding sites of monocyte chemotactic S19 ribosomal protein dimer,” American Journal of Pathology, vol. 159, no. 6, pp. 2293–2301, 2001. View at Scopus
  32. U. Semba, J. Chen, Y. Ota et al., “A plasma protein indistinguishable from ribosomal protein S19: conversion to a monocyte chemotactic factor by a factor XIIIa-catalyzed reaction on activated platelet membrane phosphatidylserine in association with blood coagulation,” American Journal of Pathology, vol. 176, no. 3, pp. 1542–1551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Nishiura, S. Tanase, Y. Sibuya, T. Nishimura, and T. Yamamoto, “Determination of the cross-linked residues in homo-dimerization of S19 ribosomal protein concomitant with exhibition of monocyte chemotactic activity,” Laboratory Investigation, vol. 79, no. 8, pp. 915–923, 1999. View at Scopus
  34. L. Dini, M. T. Ruzittu, and L. Falasca, “Recognition and phagocytosis of apoptotic cells,” Scanning Microscopy, vol. 10, no. 1, pp. 239–252, 1996. View at Scopus
  35. M. Vidal, “Exosomes in erythropoiesis,” Transfusion Clinique et Biologique, vol. 17, no. 3, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Sadallah, C. Eken, and J. A. Schifferli, “Ectosomes as modulators of inflammation and immunity,” Clinical and Experimental Immunology, vol. 163, no. 1, pp. 26–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. E. Otzen, K. Blans, H. Wang, G. E. Gilbert, and J. T. Rasmussen, “Lactadherin binds to phosphatidylserine-containing vesicles in a two-step mechanism sensitive to vesicle size and composition,” Biochimica et Biophysica Acta, vol. 1818, no. 4, pp. 1019–1027, 2012. View at Publisher · View at Google Scholar
  38. J. A. Chasis, “Erythroblastic islands: specialized microenvironmental niches for erythropoiesis,” Current Opinion in Hematology, vol. 13, no. 3, pp. 137–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Sadahira and M. Mori, “Role of the macrophage in erythropoiesis,” Pathology International, vol. 49, no. 10, pp. 841–848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. K. E. Blume, S. Soeroes, H. Keppeler et al., “Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic “find-me” signal,” Journal of Immunology, vol. 188, no. 1, pp. 135–145, 2012. View at Publisher · View at Google Scholar