About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 230625, 16 pages
http://dx.doi.org/10.1155/2012/230625
Research Article

Reevaluating the Concept of Treating Experimental Tumors with a Mixed Bacterial Vaccine: Coley’s Toxin

1Section of Molecular Oncology and Immunotherapy, Department of General, Vascular, Thoracic and Transplantation Surgery, Schillingallee 69, 18055 Rostock, Germany
2Division of Gastroenterology, Department of Internal Medicine, University of Rostock, 18055 Rostock, Germany
3Department of Medical Microbiology and Hospital Hygiene, Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, 18055 Rostock, Germany

Received 2 July 2012; Accepted 9 October 2012

Academic Editor: Y. Yoshikai

Copyright © 2012 C. Maletzki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Zacharski and V. P. Sukhatme, “Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer?” Journal of Thrombosis and Haemostasis, vol. 3, no. 3, pp. 424–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Wiemann and C. O. Starnes, “Coley's toxins, tumor necrosis factor and cancer research: a historical perspective,” Pharmacology and Therapeutics, vol. 64, no. 3, pp. 529–564, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Kumar, T. Kawai, and S. Akira, “Pathogen recognition by the innate immune system,” International Reviews of Immunology, vol. 30, no. 1, pp. 16–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Rossol, H. Heine, U. Meusch et al., “LPS-induced cytokine production in human monocytes and macrophages,” Critical Reviews in Immunology, vol. 31, no. 5, pp. 379–446, 2011. View at Scopus
  5. U. Hobohm, J. L. Stanford, and J. M. Grange, “Pathogen-associated molecular pattern in cancer immunotherapy,” Critical Reviews in Immunology, vol. 28, no. 2, pp. 95–107, 2008. View at Scopus
  6. J. J. Skitzki, E. A. Repasky, and S. S. Evans, “Hyperthermia as an immunotherapy strategy for cancer,” Current Opinion in Investigational Drugs, vol. 10, no. 6, pp. 550–558, 2009. View at Scopus
  7. A. Oblak and R. Jerala, “Toll-like receptor 4 activation in cancer progression and therapy,” Clinical and Developmental Immunology, vol. 2011, Article ID 609579, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Hobohm, “Fever and cancer in perspective,” Cancer Immunology, Immunotherapy, vol. 50, no. 8, pp. 391–396, 2001. View at Scopus
  9. H. C. Nauts and J. R. McLaren, “Coley toxins—the first century,” Advances in Experimental Medicine and Biology, vol. 267, pp. 483–500, 1990. View at Scopus
  10. F. Belardelli, M. Ferrantini, E. Proietti, and J. M. Kirkwood, “Interferon-alpha in tumor immunity and immunotherapy,” Cytokine and Growth Factor Reviews, vol. 13, no. 2, pp. 119–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Petrella, I. Quirt, S. Verma, et al., “Single-agent interleukin-2 in the treatment of metastatic melanoma,” Current Oncology, vol. 14, no. 1, pp. 21–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. G. E. Perabo and S. C. Müller, “Current and new strategies in immunotherapy for superficial bladder cancer,” Urology, vol. 64, no. 3, pp. 409–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Klier, C. Maletzki, N. Göttmann, B. Kreikemeyer, and M. Linnebacher, “Avitalized bacteria mediate tumor growth control via activation of innate immunity,” Cellular Immunology, vol. 269, no. 2, pp. 120–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Neuzillet, A. Sauvanet, and P. Hammel, “Prognostic factors for resectable pancreatic adenocarcinoma,” Journal of visceral surgery, vol. 148, no. 4, pp. e232–243, 2011. View at Scopus
  15. S. Heinrich, B. Pestalozzi, M. Lesurtel et al., “Adjuvant gemcitabine versus NEOadjuvant gemcitabine/oxaliplatin plus adjuvant gemcitabine in resectable pancreatic cancer: a randomized multicenter phase III study (NEOPAC study),” BMC Cancer, vol. 10, no. 11, p. 346, 2011.
  16. C. Maletzki, M. Linnebacher, B. Kreikemeyer, and J. Emmrich, “Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model,” Gut, vol. 57, no. 4, pp. 483–491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Linnebacher, C. Maletzki, J. Emmrich, and B. Kreikemeyer, “Lysates of S. pyogenes serotype M49 induce pancreatic tumor growth delay by specific and unspecific antitumor immune responses,” Journal of Immunotherapy, vol. 31, no. 8, pp. 704–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Hobohm, “Fever therapy revisited,” British Journal of Cancer, vol. 92, no. 3, pp. 421–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Klenk, M. Nakata, A. Podbielski, B. Skupin, H. Schroten, and B. Kreikemeyer, “Streptococcus pyogenes serotype-dependent and independent changes in infected HEp-2 epithelial cells,” ISME Journal, vol. 1, no. 8, pp. 678–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Tsung and J. A. Norton, “Lessons from Coley's Toxin,” Surgical Oncology, vol. 15, no. 1, pp. 25–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Friedman, D. K. Blanchard, C. Newton et al., “Distinctive immunomodulatory effects of endotoxin and nontoxic lipopolysaccharide derivatives in lymphoid cell cultures,” Journal of Biological Response Modifiers, vol. 6, no. 6, pp. 664–677, 1987. View at Scopus
  22. J. M. Park and D. E. Fisher, “Testimony from the Bedside: from Coley's Toxins to Targeted Immunotherapy,” Cancer Cell, vol. 18, no. 1, pp. 9–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Thomas and M. Badini, “The role of innate immunity in spontaneous regression of cancer,” Indian Journal of Cancer, vol. 48, no. 2, pp. 246–251, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Mason and N. R. Hunter, “CpG plus radiotherapy: a review of preclinical works leading to clinical trial,” Frontiers in Oncology, vol. 2, no. 101, 2012.
  25. R. Ursu and A. F. Carpentier, “Immunotherapeutic approach with oligodeoxynucleotides containing CpG motifs (CpG-ODN) in malignant glioma,” Advances in Experimental Medicine and Biology, vol. 746, pp. 95–108, 2012. View at Publisher · View at Google Scholar
  26. C. S. Zent, B. J. Smith, Z. K. Ballas et al., “Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia,” Leukemia and Lymphoma, vol. 53, no. 2, pp. 211–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Xu, H. Liu, and M. Komai-Koma, “Direct and indirect role of Toll-like receptors in T cell mediated immunity,” Cellular & Molecular Immunology, vol. 1, no. 4, pp. 239–246, 2004. View at Scopus
  28. J. Brown, H. Wang, G. N. Hajishengallis, and M. Martin, “TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk,” Journal of Dental Research, vol. 90, no. 4, pp. 417–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Itoh, H. Satoh, N. Isono, H. Rikiishi, and K. Kumagai, “Mechanism of stimulation of T cells by Streptococcus pyogenes: isolation of a major mitogenic factor, cytoplasmic membrane-associated protein,” Infection and Immunity, vol. 60, no. 8, pp. 3128–3135, 1992. View at Scopus
  30. W. K. Decker and A. Safdar, “Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: coley's legacy revisited,” Cytokine and Growth Factor Reviews, vol. 20, no. 4, pp. 271–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Makrilia, K. N. Syrigos, and M. W. Saif, “Updates on treatment of gemcitabine-refractory pancreatic adenocarcinoma,” Journal of the Pancreas, vol. 12, no. 4, pp. 351–354, 2011. View at Scopus
  32. M. Busch, R. Wilkowski, M. Schaffer, and E. Duhmke, “Combined chemotherapy, radiotherapy, and immunotherapy for pancreatic carcinoma—a case report,” Advances in Therapy, vol. 17, no. 3, pp. 133–139, 2000. View at Scopus
  33. E. F. McCarthy, “The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas,” The Iowa Orthopaedic Journal, vol. 26, pp. 154–158, 2006. View at Scopus
  34. C. A. Corzo, M. J. Cotter, P. Cheng et al., “Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells,” Journal of Immunology, vol. 182, no. 9, pp. 5693–5701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Zoglmeier, H. Bauer, D. Nörenberg et al., “CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice,” Clinical Cancer Research, vol. 17, no. 7, pp. 1765–1775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Fisch, M. Malkovsky, E. Braakman et al., “γ/δ T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis,” Journal of Experimental Medicine, vol. 171, no. 5, pp. 1567–1579, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Mölne, A. Corthay, R. Holmdahl, and A. Tarkowski, “Role of gamma/delta T cell receptor-expressing lymphocytes in cutaneous infection caused by Staphylococcus aureus,” Clinical and Experimental Immunology, vol. 132, no. 2, pp. 209–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Matsuzaki, H. Yamada, K. Kishihara, Y. Yoshikai, and K. Nomoto, “Mechanism of murine Vγ1+γδ T Cell-mediated innate immune response against Listeria monocytogenes infection,” European Journal of Immunology, vol. 32, no. 4, pp. 928–935, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. H. F. Havas, R. S. Axelrod, M. M. Burns, D. Murasko, and M. Goonewardene, “Clinical results and immunologic effects of a mixed bacterial vaccine in cancer patients,” Medical Oncology and Tumor Pharmacotherapy, vol. 10, no. 4, pp. 145–158, 1993. View at Scopus