About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 278059, 9 pages
http://dx.doi.org/10.1155/2012/278059
Research Article

Lack of Intestinal Epithelial Atg7 Affects Paneth Cell Granule Formation but Does Not Compromise Immune Homeostasis in the Gut

1Medical Clinic 1, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
2Department of Nephropathology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany

Received 14 June 2011; Revised 26 September 2011; Accepted 3 October 2011

Academic Editor: Ana Maria Caetano Faria

Copyright © 2012 Nadine Wittkopf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Stone, J. F. Mayberry, and R. Baker, “Prevalence and management of inflammatory bowel disease: a cross-sectional study from central England,” European Journal of Gastroenterology & Hepatology, vol. 15, no. 12, pp. 1275–1280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Pickert, C. Neufert, M. Leppkes et al., “STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing,” The Journal of Experimental Medicine, vol. 206, no. 7, pp. 1465–1472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Hermiston and J. I. Gordon, “Inflamatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin,” Science, vol. 270, no. 5239, pp. 1203–1207, 1995. View at Scopus
  4. J. D. Rioux, R. J. Xavier, K. D. Taylor et al., “Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis,” Nature Genetics, vol. 39, no. 5, pp. 596–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Barrett, S. Hansoul, D. L. Nicolae et al., “Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease,” Nature Genetics, vol. 40, no. 8, pp. 955–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Alegre-Abarrategui and R. Wade-Martins, “Parkinson disease, LRRK2 and the endocytic-autophagic pathway,” Autophagy, vol. 5, no. 8, pp. 1208–1210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Eisenberg-Lerner, S. Bialik, H. U. Simon, and A. Kimchi, “Life and death partners: apoptosis, autophagy and the cross-talk between them,” Cell Death and Differentiation, vol. 16, no. 7, pp. 966–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Cecconi and B. Levine, “The role of autophagy in mammalian development: cell makeover rather than cell death,” Developmental Cell, vol. 15, no. 3, pp. 344–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Mariño, A. F. Fernández, and C. López-Otín, “Autophagy and aging: lessons from progeria models,” Advances in Experimental Medicine and Biology, vol. 694, pp. 61–68, 2010. View at Publisher · View at Google Scholar
  10. X. Qu, Z. Zou, Q. Sun et al., “Autophagy gene-dependent clearance of apoptotic cells during embryonic development,” Cell, vol. 128, no. 5, pp. 931–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Deretic, “Multiple regulatory and effector roles of autophagy in immunity,” Current Opinion in Immunology, vol. 21, no. 1, pp. 53–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Komatsu, S. Waguri, T. Ueno et al., “Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice,” Journal of Cell Biology, vol. 169, no. 3, pp. 425–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kuma, M. Hatano, M. Matsui et al., “The role of autophagy during the early neonatal starvation period,” Nature, vol. 432, no. 7020, pp. 1032–1036, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Saitoh, N. Fujita, M. H. Jang et al., “Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production,” Nature, vol. 456, no. 7219, pp. 264–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. B. B. Madison, L. Dunbar, X. T. Qiao, K. Braunstein, E. Braunstein, and D. L. Gumucio, “cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine,” The Journal of Biological Chemistry, vol. 277, no. 36, pp. 33275–33283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. F. Neurath, N. Wittkopf, A. Wlodarski et al., “Assessment of tumor development and wound healing using endoscopic techniques in mice,” Gastroenterology, vol. 139, no. 6, pp. 1837–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Becker, M. C. Fantini, and M. F. Neurath, “High resolution colonoscopy in live mice,” Nature Protocols, vol. 1, no. 6, pp. 2900–2904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Becker, S. Wirtz, M. Blessing et al., “Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells,” Journal of Clinical Investigation, vol. 112, no. 5, pp. 693–706, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Uchiyama, M. Shibata, M. Koike, K. Yoshimura, and M. Sasaki, “Autophagy-physiology and pathophysiology,” Histochemistry and Cell Biology, vol. 129, no. 4, pp. 407–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Tanida and S. Waguri, “Measurement of autophagy in cells and tissues,” Methods in Molecular Biology, vol. 648, pp. 193–214, 2010.
  22. K. Cadwell, J. Y. Liu, S. L. Brown et al., “A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells,” Nature, vol. 456, no. 7219, pp. 259–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Ouellette, “Paneth cells and innate mucosal immunity,” Current Opinion in Gastroenterology, vol. 26, no. 6, pp. 547–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Cadwell, K. K. Patel, M. Komatsu, H. W. Virgin, and T. S. Stappenbeck, “A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease,” Autophagy, vol. 5, no. 2, pp. 250–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Wehkamp, J. Harder, M. Weichenthal et al., “NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression,” Gut, vol. 53, no. 11, pp. 1658–1664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Simms, J. D. Doecke, M. D. Walsh, N. Huang, E. V. Fowler, and G. L. Radford-Smith, “Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease,” Gut, vol. 57, no. 7, pp. 903–910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. G. van der Flier and H. Clevers, “Stem cells, self-renewal, and differentiation in the intestinal epithelium,” Annual Review of Physiology, vol. 71, pp. 241–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kaser, A. H. Lee, A. Franke et al., “XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease,” Cell, vol. 134, no. 5, pp. 743–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. U. S. Gaipl, A. Sheriff, S. Franz et al., “Inefficient clearance of dying cells and autoreactivity,” Current Topics in Microbiology and Immunology, vol. 305, pp. 161–176, 2006. View at Scopus
  31. K. Cadwell, K. K. Patel, N. S. Maloney et al., “Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine,” Cell, vol. 141, no. 7, pp. 1135–1145, 2010. View at Publisher · View at Google Scholar · View at Scopus