About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 284740, 8 pages
http://dx.doi.org/10.1155/2012/284740
Review Article

New Platform Technology for Comprehensive Serological Diagnostics of Autoimmune Diseases

1Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
2Faculty of Natural Sciences, Lausitz University of Applied Sciences, 01968 Senftenberg, Germany
3R/D, Medipan GmbH, 15827 Dahlewitz/Berlin, Germany
4Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
5Institute of Immunology, Technical University, 01307 Dresden, Germany
6Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine, King's College Hospital, Denmark Hill Campus, Bessemer Road, London SE5 9RJ, UK

Received 22 September 2012; Accepted 16 November 2012

Academic Editor: Pietro Invernizzi

Copyright © 2012 Annika Willitzki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Savige, B. Paspaliaris, R. Silvestrini et al., “A review of immunofluorescent patterns associated with antineutrophil cytoplasmic antibodies (ANCA) and their differentiation from other antibodies,” Journal of Clinical Pathology, vol. 51, no. 8, pp. 568–575, 1998. View at Scopus
  2. J. Savige, D. Gillis, E. Benson et al., “International consensus statement on testing and reporting of antineutrophil cytoplasmic antibodies (ANCA),” American Journal of Clinical Pathology, vol. 111, no. 4, pp. 507–513, 1999. View at Scopus
  3. K. Conrad, D. Roggenbuck, D. Reinhold, and U. Sack, “Autoantibody diagnostics in clinical practice,” Autoimmunity Reviews, vol. 11, no. 3, pp. 207–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Sack, K. Conrad, E. Csernok et al., “Autoantibody detection using indirect immunofluorescence on HEp-2 cells,” Annals of the New York Academy of Sciences, vol. 1173, pp. 166–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Mariz, E. I. Sato, S. H. Barbosa, S. H. Rodrigues, A. Dellavance, and L. E. C. Andrade, “Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases,” Arthritis and Rheumatism, vol. 63, no. 1, pp. 191–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Tozzoli, N. Bizzaro, E. Tonutti et al., “Guidelines for the laboratory use of autoantibody tests in the diagnosis and monitoring of autoimmune rheumatic diseases,” American Journal of Clinical Pathology, vol. 117, no. 2, pp. 316–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. H. Solomon, A. J. Kavanaugh, P. H. Schur et al., “Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing,” Arthritis Care and Research, vol. 47, no. 4, pp. 434–444, 2002. View at Scopus
  8. R. Tozzoli, A. Antico, B. Porcelli, and D. Bassetti, “Automation in indirect immunofluorescence testing: a new step in the evolution of the autoimmunology laboratory,” Autoimmunity Highlights, vol. 3, no. 2, pp. 59–65, 2012. View at Publisher · View at Google Scholar
  9. A. Wiik, P. Charles, and J. Meyrowitsch, “Multi-centre collaboration is needed to reach a unified and strictly defined classification of IIF ANA patterns,” in From Prediction to Prevention of Autoimmune Disease, K. Conrad, E. K. L. Chan, M. J. Fritzler, R. L. Humbel, P. L. Meroni, and Y. Shoenfeld, Eds., pp. 634–646, Pabst Science Publishers, Lengerich, Germany, 7th edition, 2011.
  10. P. L. Meroni and P. H. Schur, “ANA screening: an old test with new recommendations,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1420–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Fenger, A. Wiik, M. Høier-Madsen et al., “Detection of antinuclear antibodies by solid-phase immunoassays and immunofluorescence analysis,” Clinical Chemistry, vol. 50, no. 11, pp. 2141–2147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Fritzler, “The antinuclear antibody test: last or lasting gasp?” Arthritis and Rheumatism, vol. 63, no. 1, pp. 19–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. P. Nifli, G. Notas, M. Mamoulaki et al., “Comparison of a multiplex, bead-based fluorescent assay and immunofluorescence methods for the detection of ANA and ANCA autoantibodies in human serum,” Journal of Immunological Methods, vol. 311, no. 1-2, pp. 189–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Fritzler, “Challenges to the use of autoantibodies as predictors of disease onset, diagnosis and outcomes,” Autoimmunity Reviews, vol. 7, no. 8, pp. 616–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Rigon, F. Buzzulini, P. Soda et al., “Novel opportunities in automated classification of antinuclear antibodies on HEp-2 cells,” Autoimmunity Reviews, vol. 10, no. 10, pp. 647–652, 2011. View at Publisher · View at Google Scholar
  16. P. Soda, L. Onofri, and G. Iannello, “A decision support system for Crithidia Luciliae image classification,” Artificial Intelligence in Medicine, vol. 51, no. 1, pp. 67–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. M. Boomsma, J. G. M. C. Damoiseaux, C. A. Stegeman et al., “Image analysis: a novel approach for the quantification of antineutrophil cytoplasmic antibody levels in patients with Wegener's granulomatosis,” Journal of Immunological Methods, vol. 274, no. 1-2, pp. 27–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rigon, P. Soda, D. Zennaro, G. Iannello, and A. Afeltra, “Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose,” Cytometry B, vol. 72, no. 6, pp. 472–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Tozzoli, C. Bonaguri, A. Melegari, A. Antico, D. Bassetti, and N. Bizzaro, “Current state of diagnostic technologies in the autoimmunology laboratory,” Clinical Chemistry Laboratory Medicine. In press.
  20. K. Egerer, D. Roggenbuck, R. Hiemann et al., “Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests,” Arthritis Research and Therapy, vol. 12, no. 2, article R40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Roediger, P. Schierack, A. Boehm, et al., “A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies,” Advances in Biochemical Engineering/Biotechnology. In press.
  22. R. Hiemann, N. Hilger, J. Michel et al., “Automatic analysis of immunofluorescence patterns of HEp-2 cells,” Annals of the New York Academy of Sciences, vol. 1109, pp. 358–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Knuetter, R. Hiemann, T. Brumma, et al., “Performance of the automated immunofluorescence system AKLIDES for detection of antineutrophil cytoplasmic antibodies,” in From Prediction to Prevention of Autoimmune Disease, K. Conrad, E. K. L. Chan, M. J. Fritzler, R. L. Humbel, P. L. Meroni, and Y. Shoenfeld, Eds., pp. 685–686, Pabst Science Publishers, Lengerich, Germany, 2011.
  24. J. Damoiseaux, K. Mallet, M. Vaessen, J. Austen, and J. W. Tervaert, “Automatic reading of ANCA-slides: evaluation of the AKLIDES system,” in From Prediction to Prevention of Autoimmune Disease, K. Conrad, E. K. L. Chan, M. J. Fritzler, R. L. Humbel, P. L. Meroni, and Y. Shoenfeld, Eds., pp. 683–684, Pabst Science Publishers, Lengerich, Germany, 2011.
  25. D. Roggenbuck, D. Reinhold, R. Hiemann, U. Anderer, and K. Conrad, “Standardized detection of anti-ds DNA antibodies by indirect immunofluorescence—a new age for confirmatory tests in SLE diagnostics,” Clinica Chimica Acta, vol. 412, no. 21-22, pp. 2011–2012, 2011. View at Publisher · View at Google Scholar
  26. R. Runge, R. Hiemann, M. Wendisch, et al., “Fully automated interpretation of ionizing radiation-induced gammaH2AX foci by the novel pattern recognition system AKLIDES(R),” International Journal Radiation Biologie, vol. 88, no. 5, pp. 439–447, 2012.
  27. R. Hiemann, T. Büttner, T. Krieger, D. Roggenbuck, U. Sack, and K. Conrad, “Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells,” Autoimmunity Reviews, vol. 9, no. 1, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Hiemann, N. Hilger, U. Sack, and M. Weigert, “Objective quality evaluation of fluorescence images to optimize automatic image acquisition,” Cytometry A, vol. 69, no. 3, pp. 182–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Hiemann, D. Roggenbuck, U. Sack, U. Anderer, and K. Conrad, “Die Hep-2-Zelle als Target für multiparametrische Autoantikörperanalytik - Automatisierung und Standardisierung,” Journal Laboratory Medicine, vol. 35, no. 6, pp. 351–361, 2011.
  30. A. Melegari, C. Bonaguri, A. Russo, B. Luisita, T. Trenti, and G. Lippi, “A comparative study on the reliability of an automated system for the evaluation of cell-based indirect immunofluorescence,” Autoimmunity Reviews, vol. 11, no. 10, pp. 713–716, 2012. View at Publisher · View at Google Scholar
  31. S. Kivity, B. Gilburd, N. Agmon-Levin et al., “A novel automated indirect immunofluorescence autoantibody evaluation,” Clinical Rheumatology, vol. 31, no. 3, pp. 503–509, 2012. View at Publisher · View at Google Scholar
  32. K. Conrad, A. Ittenson, D. Reinhold et al., “High sensitive detection of double-stranded DNA autoantibodies by a modified crithidia luciliae immunofluorescence test,” Annals of the New York Academy of Sciences, vol. 1173, pp. 180–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Roggenbuck, K. Conrad, and D. Reinhold, “High sensitive detection of double-stranded DNA antibodies by a modified Crithidia luciliae immunofluorescence test may improve diagnosis of systemic lupus erythematosus,” Clinica Chimica Acta, vol. 411, no. 21-22, pp. 1837–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Grossmann, D. Roggenbuck, C. Schröder, K. Conrad, P. Schierack, and U. Sack, “Multiplex assessment of non-organ-specific autoantibodies with a novel microbead-based immunoassay,” Cytometry A, vol. 79, no. 2, pp. 118–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. N. Ivashkevich, O. A. Martin, A. J. Smith et al., “γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis,” Mutation Research, vol. 711, no. 1-2, pp. 49–60, 2011. View at Publisher · View at Google Scholar
  36. C. E. Redon, A. J. Nakamura, K. Gouliaeva, A. Rahman, W. F. Blakely, and W. M. Bonner, “The use of gamma-H2AX as a biodosimeter for total- body radiation exposure in non-human primates,” PLoS One, vol. 5, no. 11, Article ID e15544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Wiik, “Autoantibodies in vasculitis,” Arthritis Research and Therapy, vol. 5, no. 3, pp. 147–152, 2003. View at Scopus
  38. G. J. FRIOU, “Clinical application of a test for lupus globulin-nucleohistone interaction using fluorescent antibody,” The Yale Journal of Biology and Medicine, vol. 31, no. 1, pp. 40–47, 1958. View at Scopus
  39. D. Sinclair, M. Saas, D. Williams, M. Hart, and R. Goswami, “Can an ELISA replace immunofluorescence for the detection of anti-nuclear antibodies?—The routine use of anti-nuclear antibody screening ELISAs,” Clinical Laboratory, vol. 53, no. 3-4, pp. 183–191, 2007. View at Scopus
  40. A. S. Wiik, M. Høier-Madsen, J. Forslid, P. Charles, and J. Meyrowitsch, “Antinuclear antibodies: A contemporary nomenclature using HEp-2 cells,” Journal of Autoimmunity, vol. 35, no. 3, pp. 276–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Op de Beeck, P. Vermeersch, P. Verschueren et al., “Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay,” Autoimmunity Reviews, vol. 10, no. 12, pp. 801–808, 2011. View at Publisher · View at Google Scholar
  42. K. Op de Beéck, P. Vermeersch, P. Verschueren et al., “Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis,” Autoimmunity Reviews, vol. 12, no. 2, pp. 137–143, 2012. View at Publisher · View at Google Scholar
  43. N. Hayashi, T. Kawamoto, M. Mukai et al., “Detection of antinuclear antibodies by use of an enzyme immunoassay with nuclear HEp-2 cell extract and recombinant antigens: Comparison with immunofluorescence assay in 307 patients,” Clinical Chemistry, vol. 47, no. 9, pp. 1649–1659, 2001. View at Scopus
  44. C. González, B. García-Berrocal, M. Pérez, J. A. Navajo, O. Herraez, and J. M. González-Buitrago, “Laboratory screening of connective tissue diseases by a new automated ENA screening assay (EliA Symphony) in clinically defined patients,” Clinica Chimica Acta, vol. 359, no. 1-2, pp. 109–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Ghillani, A. M. Rouquette, C. Desgruelles et al., “Evaluation of the LIAISON ANA screen assay for antinuclear antibody testing in autoimmune diseases,” Annals of the New York Academy of Sciences, vol. 1109, pp. 407–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. G. Hanly, K. Thompson, G. McCurdy, L. Fougere, C. Theriault, and K. Wilton, “Measurement of autoantibodies using multiplex methodology in patients with systemic lupus erythematosus,” Journal of Immunological Methods, vol. 352, no. 1-2, pp. 147–152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Bonilla, L. Francis, F. Allam et al., “Immunofluorescence microscopy is superior to fluorescent beads for detection of antinuclear antibody reactivity in systemic lupus erythematosus patients,” Clinical Immunology, vol. 124, no. 1, pp. 18–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Buchner, “Digital image analysis results show high reproducibility and agreement with human interpretation on HEp-2 cells,” in From Prediction to Prevention of Autoimmune Disease, K. Conrad, E. K. L. Chan, M. J. Fritzler, R. L. Humbel, P. L. Meroni, and Y. Shoenfeld, Eds., pp. 662–663, Pabst Science Publishers, Lengerich, Germany, 7th edition, 2012.
  49. T. Krieger, “Comparison of an ANA automated reading system with conventional fluorescence microscopy,” in From Prediction to Prevention of Autoimmune Disease, K. Conrad, E. K. L. Chan, M. J. Fritzler, R. L. Humbel, P. L. Meroni, and Y. Shoenfeld, Eds., pp. 664–665, Pabst Science Publishers, Lengerich, Germany, 7th edition, 2012.
  50. Y. Hu and R. F. Murphy, “Automated interpretation of subcellular patterns from immunofluorescence microscopy,” Journal of Immunological Methods, vol. 290, no. 1-2, pp. 93–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Glory and R. F. Murphy, “Automated subcellular location determination and high-throughput microscopy,” Developmental Cell, vol. 12, no. 1, pp. 7–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Huang and R. F. Murphy, “From quantitative microscopy to automated image understanding,” Journal of Biomedical Optics, vol. 9, no. 5, pp. 893–912, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Conrad, H. Schneider, T. Ziemssen et al., “A new line immunoassay for the multiparametric detection of antiganglioside autoantibodies in patients with autoimmune peripheral neuropathies,” Annals of the New York Academy of Sciences, vol. 1109, pp. 256–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Conrad, D. Roggenbuck, D. Reinhold, and T. Dörner, “Profiling of rheumatoid arthritis associated autoantibodies,” Autoimmunity Reviews, vol. 9, no. 6, pp. 431–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Conrad, D. Roggenbuck, A. Ittenson, D. Reinhold, T. Buettner, and M. W. Laass, “A new dot immunoassay for simultaneous detection of celiac specific antibodies and IgA-deficiency,” Clinical Chemistry and Laboratory Medicine, vol. 50, no. 2, pp. 337–343, 2012. View at Publisher · View at Google Scholar
  56. D. Roggenbuck, K. Egerer, P. von Landenberg et al., “Antiphospholipid antibody profiling—time for a new technical approach?” Autoimmunity Reviews, vol. 11, no. 11, pp. 821–826, 2012. View at Publisher · View at Google Scholar
  57. D. Roggenbuck, K. Egerer, E. Feist, G. R. Burmester, and T. Dorner, “Antiphospholipid antibody profiling - association with the clinical phenotype in APS?” Arthritis Rheumatism, vol. 64, no. 8, pp. 2807–2808, 2012. View at Publisher · View at Google Scholar
  58. S. S. Copple, A. D. Sawitzke, A. M. Wilson, A. E. Tebo, and H. R. Hill, “Enzyme-linked immunosorbent assay screening then indirect immunofluorescence confirmation of antinuclear antibodies,” American Journal of Clinical Pathology, vol. 135, no. 5, pp. 678–684, 2011. View at Publisher · View at Google Scholar · View at Scopus