About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 354894, 5 pages
http://dx.doi.org/10.1155/2012/354894
Clinical Study

The Effect of Weight Loss on Serum Mannose-Binding Lectin Levels

1Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, 8000 Aarhus, Denmark
2Institute of Medical Microbiology and Immunology, Aarhus University, 8000 Aarhus, Denmark

Received 2 July 2012; Accepted 17 October 2012

Academic Editor: Michael A. Flierl

Copyright © 2012 P. H. Høyem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Thiel, T. Vorup-Jensen, C. M. Stover et al., “A second serine protease associated with mannan-binding lectin that activates complement,” Nature, vol. 386, no. 6624, pp. 506–510, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Dahl, S. Thiel, M. Matsushita et al., “MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway,” Immunity, vol. 15, no. 1, pp. 127–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Gadjeva, K. Takahashi, and S. Thiel, “Mannan-binding lectin—a soluble pattern recognition molecule,” Molecular Immunology, vol. 41, no. 2-3, pp. 113–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Garred, F. Larsen, J. Seyfarth, R. Fujita, and H. O. Madsen, “Mannose-binding lectin and its genetic variants,” Genes and Immunity, vol. 7, no. 2, pp. 85–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Summerfield, M. Sumiya, M. Levin, and M. W. Turner, “Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series,” British Medical Journal, vol. 314, no. 7089, pp. 1229–1232, 1997. View at Scopus
  6. A. Koch, M. Melbye, P. Sørensen et al., “Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood,” Journal of the American Medical Association, vol. 285, no. 10, pp. 1316–1321, 2001. View at Scopus
  7. D. P. Eisen, M. M. Dean, M. A. Boermeester et al., “Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection,” Clinical Infectious Diseases, vol. 47, no. 4, pp. 510–516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. H. Bouwman, A. Roos, O. T. Terpstra et al., “Mannose binding lectin gene polymorphisms confer a major risk for severe infections after liver transplantation,” Gastroenterology, vol. 129, no. 2, pp. 408–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. A. Peterslund, C. Koch, J. C. Jensenius, and S. Thiel, “Association between deficiency of mannose-binding lectin and severe infections after chemotherapy,” The Lancet, vol. 358, no. 9282, pp. 637–638, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. T. Keller, S. I. Van Leuven, M. C. Meuwese et al., “Serum levels of mannose-binding lectin and the risk of future coronary artery disease in apparently healthy men and women,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2345–2350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Møller-Kristensen, W. Wang, M. Ruseva et al., “Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury,” Scandinavian Journal of Immunology, vol. 61, no. 5, pp. 426–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. E. Jordan, M. C. Montalto, and G. L. Stahl, “Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury,” Circulation, vol. 104, no. 12, pp. 1413–1418, 2001. View at Scopus
  13. A. J. Nauta, N. Raashou-Jensen, A. Roos et al., “Mannose-binding lectin engagement with late apoptotic and necrotic cells,” European Journal of Immunology, vol. 33, no. 10, pp. 2853–2863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. Turner and R. M. J. Hamvas, “Mannose-binding lectin: structure, function, genetics and disease associations,” Reviews in Immunogenetics, vol. 2, no. 3, pp. 305–322, 2000. View at Scopus
  15. T. K. Hansen, M. A. Gall, L. Tarnow et al., “Mannose-binding lectin and mortality in type 2 diabetes,” Archives of Internal Medicine, vol. 166, no. 18, pp. 2007–2013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. K. Hansen, L. Tarnow, S. Thiel et al., “Association between mannose-binding lectin and vascular complications in type 1 diabetes,” Diabetes, vol. 53, no. 6, pp. 1570–1576, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. D. Collard, A. Vakeva, M. A. Morrissey et al., “Complement activation after oxidative stress: role of the lectin complement pathway,” American Journal of Pathology, vol. 156, no. 5, pp. 1549–1556, 2000. View at Scopus
  18. C. B. Granger, K. W. Mahaffey, W. D. Weaver et al., “Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial,” Circulation, vol. 108, no. 10, pp. 1184–1190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. K. Hansen, S. Thiel, R. Dall et al., “GH strongly affects serum concentrations of mannan-binding lectin: evidence for a new IGF-I independent immunomodulatory effect of GH,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5383–5388, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. K. Hansen, “Mannose-binding lectin (MBL) and vascular complications in diabetes,” Hormone and Metabolic Research, vol. 37, Supplement 1, pp. S95–S98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Ytting, I. J. Christensen, S. Thiel et al., “Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise,” Scandinavian Journal of Immunology, vol. 66, no. 4, pp. 458–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Fernández-Real, M. Straczkowski, J. Vendrell et al., “Protection from inflammatory disease in insulin resistance: the role of mannan-binding lectin,” Diabetologia, vol. 49, no. 10, pp. 2402–2411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Manco, J. M. Fernandez-Real, F. Equitani et al., “Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 483–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. L. Heitmann, “Prediction of body water and fat in adult Danes from measurement of electrical impedance. A validation study,” International Journal of Obesity, vol. 14, no. 9, pp. 789–802, 1990. View at Scopus
  25. S. Thiel, M. Møller-Kristensen, L. Jensen, and J. C. Jensenius, “Assays for the functional activity of the Manna-binding lectin pathway of complement activation,” Immunobiology, vol. 205, no. 4-5, pp. 446–454, 2002. View at Scopus
  26. S. B. Pedersen, K. Kristensen, P. A. Hermann, J. A. Katzenellenbogen, and B. Richelsen, “Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor α. Implications for the female fat distribution,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 4, pp. 1869–1878, 2004. View at Publisher · View at Google Scholar · View at Scopus