About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 487521, 7 pages
http://dx.doi.org/10.1155/2012/487521
Clinical Study

TRAF1 Gene Polymorphism Correlates with the Titre of Gp210 Antibody in Patients with Primary Biliary Cirrhosis

1Medical Biology Laboratory, Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
2INOVA Diagnostics, San Diego, CA 92131-1638, USA
3Liver Unit, Pomeranian Medical University, 70-111 Szczecin, Poland
4Institute of Liver Studies, School of Medicine, King's College London, London SE5 9RS, UK

Received 28 August 2012; Accepted 22 September 2012

Academic Editor: Pietro Invernizzi

Copyright © 2012 Agnieszka Kempinska-Podhorodecka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Neuberger, “Primary biliary cirrhosis,” The Lancet, vol. 350, no. 9081, pp. 875–879, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Kaplan and M. E. Gershwin, “Primary biliary cirrhosis,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1261–1273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Gershwin, I. R. Mackay, A. Sturgess, and R. L. Coppel, “Identification and specificity of a cDNA encoding the 70 KD mitochondrial antigen recognized in primary biliary cirrhosis,” The Journal of Immunology, vol. 138, no. 10, pp. 3525–3531, 1987. View at Scopus
  4. P. Milkiewicz, H. Buwaneswaran, C. Coltescu, Z. Shums, G. L. Norman, and E. J. Heathcote, “Value of autoantibody analysis in the differential diagnosis of chronic cholestatic liver disease,” Clinical Gastroenterology and Hepatology, vol. 7, no. 12, pp. 1355–1360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Czaja and G. L. Norman, “Autoantibodies in the diagnosis and management of liver disease,” Journal of Clinical Gastroenterology, vol. 37, no. 4, pp. 315–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. D. P. Bogdanos, P. Invernizzi, I. R. Mackay, and D. Vergani, “Autoimmune liver serology: current diagnostic and clinical challenges,” World Journal of Gastroenterology, vol. 14, no. 21, pp. 3374–3387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Dähnrich, A. Pares, L. Caballeria et al., “New ELISA for detecting primary biliary cirrhosis-specific antimitochondrial antibodies,” Clinical Chemistry, vol. 55, no. 5, pp. 978–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Liu, G. L. Norman, Z. Shums et al., “PBC screen: an IgG/IgA dual isotype ELISA detecting multiple mitochondrial and nuclear autoantibodies specific for primary biliary cirrhosis,” Journal of Autoimmunity, vol. 35, no. 4, pp. 436–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. P. Bogdanos and L. Komorowski, “Disease-specific autoantibodies in primary biliary cirrhosis,” Clinica Chimica Acta, vol. 412, no. 7-8, pp. 502–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. G. Mytilinaiou, W. Meyer, T. Scheper et al., “Diagnostic and clinical utility of antibodies against the nuclear body promyelocytic leukaemia and Sp100 antigens in patients with primary biliary cirrhosis,” Clinica Chimica Acta, vol. 413, no. 15-16, pp. 1211–1216, 2012. View at Publisher · View at Google Scholar
  11. F. E. Watt, O. F. W. James, and D. E. J. Jones, “Patterns of autoimmunity in primary biliary cirrhosis patients and their families: a population-based cohort study,” QJM: An International Journal of Medicine, vol. 97, no. 7, pp. 397–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Shoenfeld, “Primary biliary cirrhosis and autoimmune rheumatic diseases: prediction and prevention,” Israel Journal of Medical Sciences, vol. 28, no. 2, pp. 113–116, 1992. View at Scopus
  13. M. Tishler, I. Alosachie, N. Barka et al., “Primary Sjogren's syndrome and primary biliary cirrhosis: differences and similarities in the autoantibody profile,” Clinical and Experimental Rheumatology, vol. 13, no. 4, pp. 497–500, 1995. View at Scopus
  14. C. Rigamonti, D. P. Bogdanos, M. G. Mytilinaiou, D. S. Smyk, E. I. Rigopoulou, and A. K. Burroughs, “Primary biliary cirrhosis associated with systemic sclerosis: diagnostic and clinical challenges,” International Journal of Rheumatology, vol. 2011, Article ID 976427, 12 pages, 2011. View at Publisher · View at Google Scholar
  15. C. Selmi, S. M. De, and M. E. Gershwin, “Liver involvement in subjects with rheumatic disease,” Arthritis Research & Therapy, vol. 13, article 226, 2011. View at Publisher · View at Google Scholar
  16. K. S. Culp, C. R. Fleming, J. Duffy, et al., “Autoimmune associations in primary biliary cirrhosis,” Mayo Clinic Proceedings, vol. 57, no. 6, pp. 365–370, 1982. View at Scopus
  17. J. L. Siegel, H. Luthra, J. Donlinger, P. Angulo, and K. Lindor, “Association of primary biliary cirrhosis and rheumatoid arthritis,” Journal of Clinical Rheumatology, vol. 9, no. 6, pp. 340–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Caramella, J. Avouac, P. Sogni, X. Puéchal, A. Kahan, and Y. Allanore, “Association between rheumatoid arthritis and primary biliary cirrhosis,” Joint Bone Spine, vol. 74, no. 3, pp. 279–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Selmi, M. J. Mayo, N. Bach et al., “Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment,” Gastroenterology, vol. 127, no. 2, pp. 485–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Gershwin and I. R. Mackay, “The causes of primary biliary cirrhosis: convenient and inconvenient truths,” Hepatology, vol. 47, no. 2, pp. 737–745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. P. Bogdanos, D. S. Smyk, E. I. Rigopoulou et al., “Twin studies in autoimmune disease: genetics, gender and environment,” Journal of Autoimmunity, vol. 38, no. 2-3, pp. J156–J169, 2012. View at Publisher · View at Google Scholar
  22. P. Invernizzi, C. Selmi, F. Poli et al., “Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls,” Hepatology, vol. 48, no. 6, pp. 1906–1912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. M. Hirschfield, X. Liu, C. Xu et al., “Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants,” The New England Journal of Medicine, vol. 360, no. 24, pp. 2544–2555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. M. Hirschfield, X. Liu, Y. Han et al., “Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis,” Nature Genetics, vol. 42, no. 8, pp. 655–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Liu, P. Invernizzi, Y. Lu et al., “Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis,” Nature Genetics, vol. 42, no. 8, pp. 658–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. F. Mells, J. A. B. Floyd, K. I. Morley et al., “Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis,” Nature Genetics, vol. 43, no. 4, pp. 329–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Plenge, M. Seielstad, L. Padyukov et al., “TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study,” The New England Journal of Medicine, vol. 357, no. 12, pp. 1199–1209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. A. S. Kurreeman, G. N. Goulielmos, B. Z. Alizadeh et al., “The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 696–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Torres, R. Palomino-Morales, T. R. Vazquez-Rodriguez et al., “Lack of association between TRAF1/C5 gene polymorphisms and biopsy-proven giant cell arteritis,” The Journal of Rheumatology, vol. 37, no. 1, pp. 131–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Fotin-Mleczek, F. Henkler, A. Hausser et al., “Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-κB activation,” The Journal of Biological Chemistry, vol. 279, no. 1, pp. 677–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Xie, B. S. Hostager, M. E. Munroe, C. R. Moore, and G. A. Bishop, “Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling,” The Journal of Immunology, vol. 176, no. 9, pp. 5388–5400, 2006. View at Scopus
  32. D. Plant, W. Thomson, M. Lunt et al., “The role of rheumatoid arthritis genetic susceptibility markers in the prediction of erosive disease in patients with early inflammatory polyarthritis: results from the Norfolk Arthritis Register,” Rheumatology, vol. 50, no. 1, pp. 78–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. A. B. van Nies, R. B. Marques, S. Trompet et al., “TRAF1/C5 polymorphism is not associated with increased mortality in rheumatoid arthritis: two large longitudinal studies,” Arthritis Research & Therapy, vol. 12, no. 2, article R38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. V. F. Panoulas, J. P. Smith, P. Nightingale, and G. D. Kitas, “Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis,” Arthritis & Rheumatism, vol. 60, no. 1, pp. 39–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. European Association for the Study of the Liver, “EASL Clinical Practice Guidelines: management of cholestatic liver diseases,” Journal of Hepatology, vol. 51, no. 2, pp. 237–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Rothe, S. C. Wong, W. J. Henzel, and D. V. Goeddel, “A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor,” Cell, vol. 78, no. 4, pp. 681–692, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Ansieau, I. Scheffrahn, G. Mosialos et al., “Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 14053–14058, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Lavorgna, R. de Filippi, S. Formisano, and A. Leonardi, “TNF receptor-associated factor 1 is a positive regulator of the NF-κB alternative pathway,” Molecular Immunology, vol. 46, no. 16, pp. 3278–3282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Micheau and J. Tschopp, “Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes,” Cell, vol. 114, no. 2, pp. 181–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Chang, C. M. Rowland, V. E. Garcia et al., “A large-scale rheumatoid arthritis genetic study identifies association at chromosome 9q33.2,” PLoS Genetics, vol. 4, no. 6, Article ID e1000107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Nishimoto, Y. Kochi, K. Ikari et al., “Association study of TRAF1-C5 polymorphisms with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese,” Annals of the Rheumatic Diseases, vol. 69, no. 2, pp. 368–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. T. U. Han, S. Y. Bang, C. Kang, and S. C. Bae, “TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in Asians and in Caucasians,” Arthritis & Rheumatism, vol. 60, no. 9, pp. 2577–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. B. Hughes, R. J. Reynolds, E. E. Brown et al., “Most common SNPs associated with rheumatoid arthritis in subjects of European ancestry confer risk of rheumatoid arthritis in African-Americans,” Arthritis & Rheumatism, vol. 62, no. 12, pp. 3547–3553, 2010.
  44. J. Zhu, D. Zhang, F. Wu et al., “Single nucleotide polymorphisms at the TRAF1/C5 locus are associated with rheumatoid arthritis in a Han Chinese population,” BMC Medical Genetics, vol. 12, article 53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Knevel, D. P. de Rooy, P. K. Gregersen et al., “Studying associations between variants in TRAF1-C5 and TNFAIP3-OLIG3 and the progression of joint destruction in rheumatoid arthritis in multiple cohorts,” Annals of the Rheumatic Diseases, vol. 71, no. 10, pp. 1753–1755, 2012.
  46. R. H. Mohamed, H. F. Pasha, and E. E. El-Shahawy, “Influence of TRAF1/C5 and STAT4 genes polymorphisms on susceptibility and severity of rheumatoid arthritis in Egyptian population,” Cellular Immunology, vol. 273, no. 1, pp. 67–72, 2012. View at Publisher · View at Google Scholar
  47. A. W. Morgan, J. I. Robinson, P. G. Conaghan et al., “Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort,” Arthritis Research & Therapy, vol. 12, no. 2, article R57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. T. Vuong, I. Gunnarsson, S. Lundberg et al., “Genetic risk factors in lupus nephritis and IgA nephropathy—no support of an overlap,” PloS ONE, vol. 5, no. 5, Article ID e10559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. I. Zervou, V. M. Vazgiourakis, N. Yilmaz et al., “TRAF1/C5, eNOS, C1q, but not STAT4 and PTPN22 gene polymorphisms are associated with genetic susceptibility to systemic lupus erythematosus in Turkey,” Human Immunology, vol. 72, no. 12, pp. 1210–1213, 2011. View at Publisher · View at Google Scholar
  50. H. M. Albers, F. A. S. Kurreeman, J. J. Houwing-Duistermaat et al., “The TRAF1/C5 region is a risk factor for polyarthritis in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 11, pp. 1578–1580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Redler, F. F. Brockschmidt, L. Forstbauer et al., “The TRAF1/C5 locus confers risk for familial and severe alopecia areata,” British Journal of Dermatology, vol. 162, no. 4, pp. 866–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Mejri, H. Mbarek, M. Kallel-Sellami et al., “TRAF1/C5 polymorphism is not associated with pemphigus,” British Journal of Dermatology, vol. 160, no. 6, pp. 1348–1350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. B. D. Juran, E. J. Atkinson, J. J. Larson et al., “Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction,” Hepatology, vol. 52, no. 1, pp. 223–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Neuman, P. Angulo, I. Malkiewicz et al., “Tumor necrosis factor-α and transforming growth factor-β reflect severity of liver damage in primary biliary cirrhosis,” Journal of Gastroenterology and Hepatology, vol. 17, no. 2, pp. 196–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Lleo, M. E. Gershwin, A. Mantovani, and P. Invernizzi, “Towards common denominators in primary biliary cirrhosis: the role of IL-12,” Journal of Hepatology, vol. 56, no. 3, pp. 731–733, 2012. View at Publisher · View at Google Scholar
  56. D. Fenoglio, F. Bernuzzi, F. Battaglia et al., “Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases,” Autoimmunity Reviews. In press. View at Publisher · View at Google Scholar
  57. H. Hsu, H. B. Shu, M. G. Pan, and D. V. Goeddel, “TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways,” Cell, vol. 84, no. 2, pp. 299–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Hsu, J. Huang, H. B. Shu, V. Baichwal, and D. V. Goeddel, “TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex,” Immunity, vol. 4, no. 4, pp. 387–396, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. H. B. Shu, M. Takeuchi, and D. V. Goeddel, “The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13973–13978, 1996. View at Scopus
  60. F. Tartakovsky and H. J. Worman, “Detection of gp210 autoantibodies in primary biliary cirrhosis using a recombinant protein containing the predominant autoepitope,” Hepatology, vol. 21, no. 2, pp. 495–500, 1995. View at Scopus
  61. M. Nakamura, A. Komori, M. Ito et al., “Predictive role of anti-gp210 and anticentromere antibodies in long-term outcome of primary biliary cirrhosis,” Hepatology Research, vol. 37, supplement 3, pp. S412–S419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Wesierska-Gadek, E. Penner, P. M. Battezzati et al., “Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis,” Hepatology, vol. 43, no. 5, pp. 1135–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. D. P. Bogdanos, C. Liaskos, A. Pares et al., “Anti-gp210 antibody mirrors disease severity in primary biliary cirrhosis,” Hepatology, vol. 45, no. 6, pp. 1583–1584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Duarte-Rey, D. Bogdanos, C. Y. Yang et al., “Primary biliary cirrhosis and the nuclear pore complex,” Autoimmunity Reviews, vol. 11, no. 12, pp. 898–902, 2012. View at Publisher · View at Google Scholar
  65. D. E. Speiser, S. Y. Lee, B. Wong et al., “A regulatory role for TRAF1 in antigen-induced apoptosis of T cells,” Journal of Experimental Medicine, vol. 185, no. 10, pp. 1777–1783, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. T. U. Han, S. Y. Bang, C. Kang, and S. C. Bae, “TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in Asians and in Caucasians,” Arthritis & Rheumatism, vol. 60, no. 9, pp. 2577–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. J. Delli, F. Vaziri-Sani, B. Lindblad et al., “Zinc transporter 8 autoantibodies and their association with SLC30A8 and HLA-DQ genes differ between immigrant and Swedish patients with newly diagnosed type 1 diabetes in the better diabetes diagnosis study,” Diabetes, vol. 61, no. 10, pp. 2556–2564, 2012. View at Publisher · View at Google Scholar
  68. T. B. Niewold, J. A. Kelly, S. N. Kariuki et al., “IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 71, no. 3, pp. 463–469, 2012. View at Publisher · View at Google Scholar
  69. A. J. Czaja, Z. Shums, W. L. Binder, S. J. Lewis, V. J. Nelson, and G. L. Norman, “Frequency and significance of antibodies to chromatin in autoimmune hepatitis,” Digestive Diseases and Sciences, vol. 48, no. 8, pp. 1658–1664, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. L. B. El-Din Elshazly, A. M. Youssef, N. H. Mahmoud, and M. M. Ibrahim, “Study of nonstandard auto-antibodies as prognostic markers in auto immune hepatitis in children,” Italian Journal of Pediatrics, vol. 35, no. 22, article 22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. J. Czaja, “Autoantibodies as prognostic markers in autoimmune liver disease,” Digestive Diseases and Sciences, vol. 55, no. 8, pp. 2144–2161, 2010. View at Publisher · View at Google Scholar · View at Scopus