About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 492920, 8 pages
http://dx.doi.org/10.1155/2012/492920
Review Article

Modulation of Immunity by Antiangiogenic Molecules in Cancer

1INSERM U970, Paris Cardiovascular Research Center (PARCC), Université Paris-Descartes, Sorbonne Paris Cité, 56 rue Leblanc, 75015 Paris, France
2Service d’Immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
3Service d’Hépatogastro-Entérologie et d’Oncologie Digestive, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France

Received 27 July 2012; Accepted 10 December 2012

Academic Editor: W. Kast

Copyright © 2012 Magali Terme et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  2. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Shankaran, H. Ikeda, A. T. Bruce et al., “IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity,” Nature, vol. 410, no. 6832, pp. 1107–1111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Buell, T. G. Gross, and E. S. Woodle, “Malignancy after transplantation,” Transplantation, vol. 80, no. 2, pp. S254–S264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Frisch, R. J. Biggar, E. A. Engels, and J. J. Goedert, “Association of cancer with AIDS-related immunosuppression in adults,” Journal of the American Medical Association, vol. 285, no. 13, pp. 1736–1745, 2001. View at Scopus
  6. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Coca, J. Perez-Piqueras, D. Martinez, et al., “The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma,” Cancer, vol. 79, pp. 2320–2328, 1997. View at Publisher · View at Google Scholar
  9. L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. André, A. Tesniere, and G. Kroemer, “The anticancer immune response: indispensable for therapeutic success?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 1991–2001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Perrotte, T. Matsumoto, K. Inoue et al., “Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice,” Clinical Cancer Research, vol. 5, no. 2, pp. 257–265, 1999. View at Scopus
  11. J. Rak, J. L. Yu, G. Klement, and R. S. Kerbel, “Oncogenes and angiogenesis: signaling three-dimensional tumor growth,” Journal of Investigative Dermatology Symposium Proceedings, vol. 5, no. 1, pp. 24–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. Gabrilovich, H. L. Chen, K. R. Girgis, et al., “Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells,” Nature Medicine, vol. 2, pp. 1096–1103, 1996. View at Publisher · View at Google Scholar
  13. M. M. Dikov, J. E. Ohm, N. Ray et al., “Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation,” Journal of Immunology, vol. 174, no. 1, pp. 215–222, 2005. View at Scopus
  14. M. Benkhoucha, M. L. Santiago-Raber, G. Schneiter et al., “Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6424–6429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. C. Tromp, M. G. A. Oude Egbrink, R. P. M. Dings et al., “Tumor angiogenesis factors reduce leukocyte adhesion in vivo,” International Immunology, vol. 12, no. 5, pp. 671–676, 2000. View at Scopus
  16. T. Oyama, S. Ran, T. Ishida et al., “Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells,” Journal of Immunology, vol. 160, no. 3, pp. 1224–1232, 1998. View at Scopus
  17. B. Almand, J. R. Resser, B. Lindman et al., “Clinical significance of defective dendritic cell differentiation in cancer,” Clinical Cancer Research, vol. 6, no. 5, pp. 1755–1766, 2000. View at Scopus
  18. T. Osada, G. Chong, R. Tansik et al., “The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients,” Cancer Immunology, Immunotherapy, vol. 57, no. 8, pp. 1115–1124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Gabrilovich, T. Ishida, T. Oyama et al., “Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo,” Blood, vol. 92, no. 11, pp. 4150–4166, 1998. View at Scopus
  20. Y. Huang, X. Chen, M. M. Dikov et al., “Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF,” Blood, vol. 110, no. 2, pp. 624–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Ghiringhelli, P. E. Puig, S. Roux et al., “Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 919–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Serafini, S. Mgebroff, K. Noonan, and I. Borrello, “Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells,” Cancer Research, vol. 68, no. 13, pp. 5439–5449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Terme, S. Pernot, E. Marcheteau, et al., “VEGFA-VEGF Receptor pathway blockade inhibits tumor-induced regulatory T cell proliferation in colorectal cancer,” Cancer Research. In press.
  24. M. Terme, S. Pernot, E. Marcheteau, F. Sandoval, E. Tartour, and J. Taieb, “VEGF/VEGF-R blockade modulates tumour-induced immunosuppression in colorectal cancer,” European Journal of Cancer, p. S119, 2011, European Multidisciplinary Cancer Congress on Integrating Basic and Translational Science, Surgery, Radiotherapy, Medical Oncology, Advocacy and Care, Elsevier Science, Stockholm, Sweden.
  25. M. R. Shurin, L. Lu, P. Kalinski, A. M. Stewart-Akers, and M. T. Lotze, “Th1/Th2 balance in cancer, transplantation and pregnancy,” Springer Seminars in Immunopathology, vol. 21, no. 3, pp. 339–359, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Linde, W. Lederle, S. Depner, N. van Rooijen, C. M. Gutschalk, and M. M. Mueller, “Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages,” The Journal of Pathology, vol. 227, no. 1, pp. 17–28, 2012. View at Publisher · View at Google Scholar
  27. Y. L. Lin, Y. C. Liang, and B. L. Chiang, “Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells,” Journal of Leukocyte Biology, vol. 82, no. 6, pp. 1473–1480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Gherardi, W. Birchmeier, C. Birchmeier, and G. Vande Woude, “Targeting MET in cancer: rationale and progress,” Nature Reviews Cancer, vol. 12, pp. 89–103, 2012. View at Publisher · View at Google Scholar
  29. F. Bussolino, M. F. Di Renzo, M. Ziche et al., “Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth,” Journal of Cell Biology, vol. 119, no. 3, pp. 629–641, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. D. S. Grant, H. K. Kleinman, I. D. Goldberg et al., “Scatter factor induces blood vessel formation in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1937–1941, 1993. View at Scopus
  31. S. M. Kurz, S. S. Diebold, T. Hieronymus, et al., “The impact of c-met/scatter factor receptor on dendritic cell migration,” European Journal of Immunology, vol. 32, pp. 1832–1838, 2002. View at Publisher · View at Google Scholar
  32. L. Q. M. Chow and S. G. Eckhardt, “Sunitinib: from rational design to clinical efficacy,” Journal of Clinical Oncology, vol. 25, no. 7, pp. 884–896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Wilhelm, C. Carter, M. Lynch et al., “Discovery and development of sorafenib: a multikinase inhibitor for treating cancer,” Nature Reviews Drug Discovery, vol. 5, no. 10, pp. 835–844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. B. J. Giantonio, P. J. Catalano, N. J. Meropol et al., “Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1539–1544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. I. Gabrilovich, T. Ishida, S. Nadaf, J. E. Ohm, and D. P. Carbone, “Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function,” Clinical Cancer Research, vol. 5, no. 10, pp. 2963–2970, 1999. View at Scopus
  37. T. Ishida, T. Oyama, D. P. Carbone, and D. I. Gabrilovich, “Defective function of langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors,” Journal of Immunology, vol. 161, no. 9, pp. 4842–4851, 1998. View at Scopus
  38. J. Ozao-Choy, G. Ma, J. Kao et al., “The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies,” Cancer Research, vol. 69, no. 6, pp. 2514–2522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. H. Finke, B. Rini, J. Ireland et al., “Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients,” Clinical Cancer Research, vol. 14, no. 20, pp. 6674–6682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Abe, I. Younos, S. Westphal et al., “Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice,” International Immunopharmacology, vol. 10, no. 1, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Cao, Y. Xu, J. I. Youn et al., “Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model,” Laboratory Investigation, vol. 91, no. 4, pp. 598–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Busse, A. M. Asemissen, A. Nonnenmacher et al., “Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma,” European Journal of Cancer, vol. 47, no. 5, pp. 690–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. I. M. Desar, J. H. Jacobs, C. A. Hulsbergen-vandeKaa et al., “Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients,” International Journal of Cancer, vol. 129, no. 2, pp. 507–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Nagai, T. Mukozu, D. Matsui, et al., “Sorafenib prevents escape from host immunity in liver cirrhosis patients with advanced hepatocellular carcinoma,” Clinical and Developmental Immunology, vol. 2012, Article ID 607851, 8 pages, 2012. View at Publisher · View at Google Scholar
  45. O. Adotevi, H. Pere, P. Ravel et al., “A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients,” Journal of Immunotherapy, vol. 33, no. 9, pp. 991–998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Wada, H. Suzuki, R. Fuchino et al., “The contribution of vascular endothelial growth factor to the induction of regulatory T- cells in malignant effusions,” Anticancer Research, vol. 29, no. 3, pp. 881–888, 2009. View at Scopus
  47. J. A. Garcia, T. Mekhail, P. Elson et al., “Clinical and immunomodulatory effects of bevacizumab and low-dose interleukin-2 in patients with metastatic renal cell carcinoma: results from a phase II trial,” British Journal of Urology International, vol. 107, no. 4, pp. 562–570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Koreth, K. Matsuoka, H. T. Kim, et al., “Interleukin-2 and regulatory T cells in graft-versus-host disease,” The New England Journal of Medicine, vol. 365, pp. 2055–2066, 2011. View at Publisher · View at Google Scholar
  49. A. Facciabene, X. Peng, I. S. Hagemann et al., “Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells,” Nature, vol. 475, no. 7355, pp. 226–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. S. Ko, A. H. Zea, B. I. Rini et al., “Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients,” Clinical Cancer Research, vol. 15, no. 6, pp. 2148–2157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Mougiakakos, A. Choudhury, A. Lladser, R. Kiessling, and C. C. Johansson, “Regulatory T cells in cancer,” Advances in Cancer Research, vol. 107, pp. 57–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Pere, C. Tanchot, J. Bayry, et al., “Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer,” Oncoimmunology, vol. 1, pp. 326–333, 2012. View at Publisher · View at Google Scholar
  53. M. Kujawski, C. Zhang, A. Herrmann et al., “Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects,” Cancer Research, vol. 70, no. 23, pp. 9599–9610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Xin, C. Zhang, A. Herrmann, Y. Du, R. Figlin, and H. Yu, “Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells,” Cancer Research, vol. 69, no. 6, pp. 2506–2513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. S. Ko, P. Rayman, J. Ireland et al., “Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained,” Cancer Research, vol. 70, no. 9, pp. 3526–3536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. C. L. Roland, K. D. Lynn, J. E. Toombs, S. P. Dineen, D. G. Udugamasooriya, and R. A. Brekken, “Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer,” PLoS ONE, vol. 4, no. 11, article e7669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Kusmartsev, E. Eruslanov, H. Kübler et al., “Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma,” Journal of Immunology, vol. 181, no. 1, pp. 346–353, 2008. View at Scopus
  58. P. C. Rodriguez, M. S. Ernstoff, C. Hernandez et al., “Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes,” Cancer Research, vol. 69, no. 4, pp. 1553–1560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. E. Finkelstein, T. Carey, I. Fricke et al., “Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma,” Journal of Immunotherapy, vol. 33, no. 8, pp. 817–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Jayaraman, F. Parikh, E. Lopez-Rivera, et al., “Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release,” The Journal of Immunology, vol. 188, pp. 5365–5376, 2012. View at Publisher · View at Google Scholar
  61. M. Kortylewski and H. Yu, “Role of Stat3 in suppressing anti-tumor immunity,” Current Opinion in Immunology, vol. 20, no. 2, pp. 228–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. K. Shrimali, Z. Yu, M. R. Theoret, D. Chinnasamy, N. P. Restifo, and S. A. Rosenberg, “Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer,” Cancer Research, vol. 70, no. 15, pp. 6171–6180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. E. A. Manning, J. G. M. Ullman, J. M. Leatherman et al., “A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism,” Clinical Cancer Research, vol. 13, no. 13, pp. 3951–3959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. A. E. M. Dirkx, M. G. A. Oude Egbrink, K. Castermans et al., “Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors,” The FASEB Journal, vol. 20, no. 6, pp. 621–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Zhao, Y. H. Gu, R. Song, B. Q. Qu, and Q. Xu, “Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation,” Leukemia, vol. 22, no. 6, pp. 1226–1233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. N. Siegel, C. H. June, H. Yamada, U. R. Rapp, and L. E. Samelson, “Rapid activation of c-Raf-1 after stimulation of the T-cell receptor or the muscarinic receptor type 1 in resting T cells,” Journal of Immunology, vol. 151, no. 8, pp. 4116–4127, 1993. View at Scopus
  67. M. M. Hipp, N. Hilf, S. Walter et al., “Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses,” Blood, vol. 111, no. 12, pp. 5610–5620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Manzoni, B. Rovati, M. Ronzoni, et al., “Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer,” Oncology, vol. 79, no. 3-4, pp. 187–196, 2010. View at Publisher · View at Google Scholar
  69. N. Tsavaris, I. F. Voutsas, C. Kosmas, A. D. Gritzapis, and C. N. Baxevanis, “Combined treatment with Bevacizumab and standard chemotherapy restores abnormal immune parameters in advanced colorectal cancer patients,” Investigational New Drugs, vol. 30, no. 1, pp. 395–402, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Krusch, J. Salih, M. Schlicke et al., “The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro,” Journal of Immunology, vol. 183, no. 12, pp. 8286–8294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Powles, S. Chowdhury, M. Bower et al., “The effect of sunitinib on immune subsets in metastatic clear cell renal cancer,” Urologia Internationalis, vol. 86, no. 1, pp. 53–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Huang, Y. Wang, Y. Li, K. Guo, and Y. He, “Role of sorafenib and sunitinib in the induction of expressions of NKG2D ligands in nasopharyngeal carcinoma with high expression of ABCG2,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 5, pp. 829–837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Kohga, T. Takehara, T. Tatsumi et al., “Sorafenib inhibits the shedding of major histocompatibility complex class i-related chain a on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9,” Hepatology, vol. 51, no. 4, pp. 1264–1273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Farsaci, J. P. Higgins, and J. W. Hodge, “Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy,” International Journal of Cancer, vol. 130, no. 8, pp. 1948–1959, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Taieb, N. Chaput, N. Schartz, et al., “Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines,” The Journal of Immunology, vol. 176, pp. 2722–2729, 2006.
  76. H. Pere, Y. Montier, J. Bayry, et al., “A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens,” Blood, vol. 118, pp. 4853–4862, 2011. View at Publisher · View at Google Scholar
  77. B. Li, A. S. Lalani, T. C. Harding et al., “Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy,” Clinical Cancer Research, vol. 12, no. 22, pp. 6808–6816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. K. W. Huang, H. L. Wu, H. L. Lin et al., “Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14769–14774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Bose, J. L. Taylor, S. Alber, et al., “Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination,” International Journal of Cancer, vol. 129, no. 9, pp. 2158–2170, 2010.
  80. S. Matsumoto, S. Batra, K. Saito, et al., “Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia,” Cancer Research, vol. 71, pp. 6350–6359, 2011. View at Publisher · View at Google Scholar
  81. Y. Huang, J. Yuan, E. Righi, et al., “Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 17561–17566, 2012. View at Publisher · View at Google Scholar
  82. F. Shojaei, “Anti-angiogenesis therapy in cancer: current challenges and future perspectives,” Cancer Letters, vol. 320, pp. 130–137, 2012. View at Publisher · View at Google Scholar
  83. E. Tartour, H. Pere, B. Maillere et al., “Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy,” Cancer and Metastasis Reviews, vol. 30, no. 1, pp. 83–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Shojaei, X. Wu, A. K. Malik et al., “Tumor refractoriness to anti-VEGF treatment is mediated by CD11b +Gr1+ myeloid cells,” Nature Biotechnology, vol. 25, no. 8, pp. 911–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Huang, Y. Ding, M. Zhou et al., “Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma,” Cancer Research, vol. 70, no. 3, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Kopetz, P. M. Hoff, J. S. Morris et al., “Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance,” Journal of Clinical Oncology, vol. 28, no. 3, pp. 453–459, 2010. View at Publisher · View at Google Scholar · View at Scopus