About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 515962, 12 pages
http://dx.doi.org/10.1155/2012/515962
Review Article

HIV RNA Suppression and Immune Restoration: Can We Do Better?

1Division of Infectious Diseases, Department of Clinical and Molecular Biomedicine, University of Catania, Catania 95125, Italy
2Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA

Received 15 November 2011; Revised 2 January 2012; Accepted 15 January 2012

Academic Editor: Carlo Torti

Copyright © 2012 Marilia Rita Pinzone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Palella, K. M. Delaney, A. C. Moorman et al., “Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 338, no. 13, pp. 853–860, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. M. Hammer, K. E. Squires, M. D. Hughes et al., “A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less,” The New England Journal of Medicine, vol. 337, no. 11, pp. 725–733, 1997. View at Publisher · View at Google Scholar · View at PubMed
  3. R. M. Gulick, J. W. Mellors, D. Havlir et al., “Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy,” The New England Journal of Medicine, vol. 337, no. 11, pp. 734–739, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. V. Havlir, K. K. Koelsch, M. C. Strain et al., “Predictors of residual viremia in HIV-infected patients successfully treated with efavirenz and lamivudine plus either tenofovir or stavudine,” Journal of Infectious Diseases, vol. 191, no. 7, pp. 1164–1168, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Palmer, A. P. Wiegand, F. Maldarelli et al., “New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma,” Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4531–4536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Palmer, F. Maldarelli, A. Wiegand et al., “Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3879–3884, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. G. Dornadula, H. Zhang, B. VanUitert et al., “Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy,” JAMA, vol. 282, no. 17, pp. 1627–1632, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Lewin and C. Rouzioux, “HIV cure and eradication: how will we get from the laboratory to effective clinical trials?” AIDS, vol. 25, no. 7, pp. 885–897, 2011. View at Publisher · View at Google Scholar · View at PubMed
  9. C. F. Kelley, C. M. R. Kitchen, P. W. Hunt et al., “Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment,” Clinical Infectious Diseases, vol. 48, no. 6, pp. 787–794, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. G. R. Kaufmann, L. Perrin, G. Pantaleo, et al., “CD4 T-lymphocyte recovery in individuals with advanced HIV-1 infection receiving potent antiretroviral therapy for 4 years: the Swiss HIV cohort study,” Archives of Internal Medicine, vol. 163, no. 18, pp. 2187–2195, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. G. R. Kaufmann, M. Bloch, R. Finlayson, J. Zaunders, D. Smith, and D. A. Cooper, “The extent of HIV-1-related immunodeficiency and age predict the long-term CD4 T lymphocyte response to potent antiretroviral therapy,” AIDS, vol. 16, no. 3, pp. 359–367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Moore and J. C. Keruly, “CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression,” Clinical Infectious Diseases, vol. 44, no. 3, pp. 441–446, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. N. Althoff, A. C. Justice, S. J. Gange et al., “Virologic and immunologic response to HAART, by age and regimen class,” AIDS, vol. 24, no. 16, pp. 2469–2479, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. P. Viard, A. Mocroft, A. Chiesi et al., “Influence of age on CD4 cell recovery in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy: evidence from the EuroSIDA study,” Journal of Infectious Diseases, vol. 183, no. 8, pp. 1290–1294, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. M. Tarwater, J. B. Margolick, J. Jin et al., “Increase and plateau of CD4 T-cell counts in the 3 1/2 years after initiation of potent antiretroviral therapy,” Journal of Acquired Immune Deficiency Syndromes, vol. 27, no. 2, pp. 168–175, 2001. View at Scopus
  16. G. R. Kaufmann, H. Furrer, B. Ledergerber, et al., “Characteristics, determinants, and clinical relevance of CD4 T cell recovery to <500 cells/μL in HIV type 1-infected individuals receiving potent antiretroviral therapy,” Clinical Infectious Diseases, vol. 41, no. 3, pp. 361–372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. Egger, K. Petoumenos, A. Kamarulzaman et al., “Long-term patterns in CD4 response are determined by an interaction between baseline CD4 cell count, viral load, and time: the asia pacific HIV observational database (APHOD),” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 5, pp. 513–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Florence, J. Lundgren, C. Dreezen et al., “Factors associated with a reduced CD4 lymphocyte count response to HAART despite full viral suppression in the EuroSIDA study,” HIV Medicine, vol. 4, no. 3, pp. 255–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Castagna, L. Galli, C. Torti et al., “Predicting the magnitude of short-term CD4+ T-cell recovery in HIV-infected patients during first-line highly active antiretroviral therapy,” Antiviral Therapy, vol. 15, no. 2, pp. 165–175, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. J. Smith, C. A. Sabin, M. S. Youle et al., “Factors influencing increases in CD4 cell counts of HIV-positive persons receiving long-term highly active antiretroviral therapy,” Journal of Infectious Diseases, vol. 190, no. 10, pp. 1860–1868, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. P. W. Hunt, S. G. Deeks, B. Rodriguez et al., “Continued CD4 cell count increases in HIV-infected adults experiencing 4 years of viral suppression on antiretroviral therapy,” AIDS, vol. 17, no. 13, pp. 1907–1915, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Falster, K. Petoumenos, J. Chuah et al., “Poor baseline immune function predicts an incomplete immune response to combination antiretroviral treatment despite sustained viral suppression,” Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 3, pp. 307–313, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Isgrò, W. Leti, W. De Santis et al., “Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART,” Clinical Infectious Diseases, vol. 46, no. 12, pp. 1902–1910, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Kulkosky, M. Bouhamdan, A. Geist, G. Nunnari, D. G. Phinney, and R. J. Pomerantz, “Pathogenesis of HIV-1 infection within bone marrow cells,” Leukemia and Lymphoma, vol. 37, no. 5-6, pp. 497–515, 2000. View at Scopus
  25. E. Ruiz-Mateos, A. Rubio, A. Vallejo et al., “Thymic volume is associated independently with the magnitude of short- and long-term repopulation of CD4+ T cells in HIV-infected adults after highly active antiretroviral therapy (HAART),” Clinical and Experimental Immunology, vol. 136, no. 3, pp. 501–506, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. Y. Smith, H. Valdez, A. Landay et al., “Thymic size and lymphocyte restoration in patients with human immunodeficiency virus infection after 48 weeks of zidovudine, lamivudine, and ritonavir therapy,” Journal of Infectious Diseases, vol. 181, no. 1, pp. 141–147, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. L. Teixeira, H. Valdez, J. M. McCune et al., “Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function,” AIDS, vol. 15, no. 14, pp. 1749–1756, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Ahuja, H. Kulkarni, G. Catano et al., “CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals,” Nature Medicine, vol. 14, no. 4, pp. 413–420, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. D. L. Du, D. A. Volpe, C. K. Grieshaber, and M. J. Murphy, “In vitro toxicity of 3'-azido-3'-deoxythymidine, carbovir and 2,3-dihydro-2,3-dideoxythymidine to human and murine haematopoietic progenitor cells,” British Journal of Haematology, vol. 80, no. 4, pp. 437–445, 1992. View at Scopus
  30. U. Karrer, B. Ledergerber, H. Furrer et al., “Dose-dependent influence of didanosine on immune recovery in HIV-infected patients treated with tenofovir,” AIDS, vol. 19, no. 17, pp. 1987–1994, 2005. View at Scopus
  31. M. Viora, G. Di Genova, R. Rivabene, W. Malorni, and A. Fattorossi, “Interference with cell cycle progression and induction of apoptosis by dideoxynucleoside analogs,” International Journal of Immunopharmacology, vol. 19, no. 6, pp. 311–321, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Piconi, D. Trabattoni, A. Gori et al., “Immune activation, apoptosis, and treg activity are associated with persistently reduced CD4+ T-cell counts during antiretroviral therapy,” AIDS, vol. 24, no. 13, pp. 1991–2000, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. M. Lederman, E. Connick, A. Landay et al., “Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of Zidovudine, Lamivudine, and Ritonavir: results of AIDS clinical trials group protocol 315,” Journal of Infectious Diseases, vol. 178, no. 1, pp. 70–79, 1998. View at Scopus
  34. A. Guihot, R. Tubiana, G. Breton et al., “Immune and virological benefits of 10 years of permanent viral control with antiretroviral therapy,” AIDS, vol. 24, no. 4, pp. 614–617, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. Ledergerber, J. D. Lundgren, A. S. Walker, et al., “Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral drug classes,” The Lancet, vol. 364, no. 9428, pp. 51–62, 2004.
  36. R. P. Bucy, R. D. Hockett, C. A. Derdeyn et al., “Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues,” The Journal of Clinical Investigation, vol. 103, no. 10, pp. 1391–1398, 1999. View at Scopus
  37. V. Le Moing, R. Thiébaut, G. Chêne et al., “Predictors of long-term increase in CD4+ cell counts in human immunodeficiency virus—infected patients receiving a protease inhibitor—containing antiretroviral regimen,” Journal of Infectious Diseases, vol. 185, no. 4, pp. 471–480, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. J. J. Lok, R. J. Bosch, C. A. Benson et al., “Long-term increase in CD4+ T-cell counts during combination antiretroviral therapy for HIV-1 infection,” AIDS, vol. 24, no. 12, pp. 1867–1876, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. M. Lederman, R. McKinnis, D. Kelleher et al., “Cellular restoration in HIV infected persons treated with abacavir and a protease inhibitor: age inversely predicts naive CD4 cell count increase,” AIDS, vol. 14, no. 17, pp. 2635–2642, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Tsukamoto, K. Clise-Dwyer, G. E. Huston et al., “Age-associated increase in lifespan of naïve CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18333–18338, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. Chehimi, L. Azzoni, M. Farabaugh et al., “Baseline viral load and immune activation determine the extent of reconstitution of innate immune effectors in HIV-1-infected subjects undergoing antiretroviral treatment,” Journal of Immunology, vol. 179, no. 4, pp. 2642–2650, 2007. View at Scopus
  42. L. Azzoni, E. Papasavvas, J. Chehimi et al., “Sustained impairment of IFN-γ secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity,” Journal of Immunology, vol. 168, no. 11, pp. 5764–5770, 2002. View at Scopus
  43. S. F. Stone, P. Price, and M. A. French, “Dysregulation of CD28 and CTLA-4 expression by CD4 T cells from previously immunodeficient HIV-infected patients with sustained virological responses to highly active antiretroviral therapy,” HIV Medicine, vol. 6, no. 4, pp. 278–283, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. V. Baker, G. Peng, J. Rapkin et al., “CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection,” AIDS, vol. 22, no. 7, pp. 841–848, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. V. Baker, G. Peng, J. Rapkin et al., “Poor initial CD4+ recovery with antiretroviral therapy prolongs immune depletion and increases risk for AIDS and non-AIDS diseases,” Journal of Acquired Immune Deficiency Syndromes, vol. 48, no. 5, pp. 541–546, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. Reekie, C. Kosa, F. Engsig et al., “Relationship between current level of immunodeficiency and non-acquired immunodeficiency syndrome-defining malignancies,” Cancer, vol. 116, no. 22, pp. 5306–5315, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. L. Gazzola, C. Tincati, G. M. Bellistrì, A. D. Monforte, and G. Marchetti, “The absence of CD4+ T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunological gaps, and therapeutic options,” Clinical Infectious Diseases, vol. 48, no. 3, pp. 328–337, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. P. Corbeau and J. Reynes, “Immune reconstitution under antiretroviral therapy: the new challenge in HIV-1 infection,” Blood, vol. 117, no. 21, pp. 5582–5590, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. J. Pido-Lopez, N. Imami, and R. Aspinall, “Both age and gender affect thymic output: more recent thymic migrants in females than males as they age,” Clinical and Experimental Immunology, vol. 125, no. 3, pp. 409–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Benveniste, A. Flahault, F. Rollot et al., “Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads,” Journal of Infectious Diseases, vol. 191, no. 10, pp. 1670–1679, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Torti, G. Cologni, M. C. Uccelli et al., “Immune correlates of virological response in HIV-positive patients after highly active antiretroviral therapy (HAART),” Viral Immunology, vol. 17, no. 2, pp. 279–286, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. Li, N. Wu, Y. Dai et al., “Reduced thymic output is a major mechanism of immune reconstitution failure in HIV-infected patients after long-term antiretroviral therapy,” Clinical Infectious Diseases, vol. 53, no. 9, pp. 944–951, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. S. Beq, J. F. Delfraissy, and J. Theze, “Interleukin-7 (IL-7): immune function, involvement in the pathogenesis of HIV infection and therapeutic potential,” European Cytokine Network, vol. 15, no. 4, pp. 279–289, 2004. View at Scopus
  54. L. A. Napolitano, R. M. Grant, S. G. Deeks et al., “Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis,” Nature Medicine, vol. 7, no. 1, pp. 73–79, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. Marziali, W. De Santis, R. Carello et al., “T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART,” AIDS, vol. 20, no. 16, pp. 2033–2041, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. E. J. Molloy, A. J. O'Neill, J. J. Grantham et al., “Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone,” Blood, vol. 102, no. 7, pp. 2653–2659, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. N. J. Olsen and W. J. Kovacs, “Evidence that androgens modulate human thymic T cell output,” Journal of Investigative Medicine, vol. 59, no. 1, pp. 32–35, 2011. View at Publisher · View at Google Scholar
  58. J. F. Camargo, M. P. Quinones, S. Mummidi et al., “CCR5 expression levels influence NFAT translocation, IL-2 production, and subsequent signaling events during T lymphocyte activation,” Journal of Immunology, vol. 182, no. 1, pp. 171–182, 2009. View at Scopus
  59. R. D. MacArthur, R. M. Novak, G. Peng et al., “A comparison of three highly active antiretroviral treatment strategies consisting of non-nucleoside reverse transcriptase inhibitors, protease inhibitors, or both in the presence of nucleoside reverse transcriptase inhibitors as initial therapy (CPCRA 058 FIRST Study): a long-term randomised trial,” The Lancet, vol. 368, no. 9553, pp. 2125–2135, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. C. Torti, F. Maggiolo, A. Patroni et al., “Exploratory analysis for the evaluation of lopinavir/ritonavir-versus efavirenz-based HAART regimens in antiretroviral-naive HIV-positive patients: results from the Italian MASTER Cohort,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 190–195, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. A. Riddler, R. Haubrich, A. G. DiRienzo et al., “Class-sparing regimens for initial treatment of HIV-1 infection,” The New England Journal of Medicine, vol. 358, no. 20, pp. 2095–2106, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. A. Bartlett, M. J. Fath, R. DeMasi et al., “An updated systematic overview of triple combination therapy in antiretroviral-naive HIV-infected adults,” AIDS, vol. 20, no. 16, pp. 2051–2064, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. W. Lu and J. M. Andrieu, “HIV protease inhibitors restore impaired T-cell proliferative response in vivo and in vitro: a viral-suppression-independent mechanism,” Blood, vol. 96, no. 1, pp. 250–258, 2000. View at Scopus
  64. E. M. Sloand, P. N. Kumar, S. Kim, A. Chaudhuri, F. F. Weichold, and N. S. Young, “Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4+ T cells and decreases their susceptibility to apoptosis in vitro and in vivo,” Blood, vol. 94, no. 3, pp. 1021–1027, 1999. View at Scopus
  65. R. T. Gandhi, J. Spritzler, E. Chan et al., “Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384,” Journal of Acquired Immune Deficiency Syndromes, vol. 42, no. 4, pp. 426–434, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. G. Marchetti, G. M. Bellistrì, E. Borghi et al., “Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy,” AIDS, vol. 22, no. 15, pp. 2035–2044, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. S. R. Ostrowski, T. L. Katzenstein, P. T. Thim, B. K. Pedersen, J. Gerstoft, and H. Ullum, “Low-level viremia and proviral DNA impede immune reconstitution in HIV-1-infected patients receiving highly active antiretroviral therapy,” Journal of Infectious Diseases, vol. 191, no. 3, pp. 348–357, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Massanella, E. Negredo, N. Pérez-Álvarez et al., “CD4 T-cell hyperactivation and susceptibility to cell death determine poor CD4 T-cell recovery during suppressive HAART,” AIDS, vol. 24, no. 7, pp. 959–968, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. E. Negredo, M. Massanella, J. Puig et al., “Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV-infected patients: clinical implications,” Clinical Infectious Diseases, vol. 50, no. 9, pp. 1300–1308, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. V. Appay and D. Sauce, “Immune activation and inflammation in HIV-1 infection: causes and consequences,” Journal of Pathology, vol. 214, no. 2, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. M. Paiardini, I. Frank, I. Pandrea, C. Apetrei, and G. Silvestri, “Mucosal immune dysfunction in AIDS pathogenesis,” AIDS Reviews, vol. 10, no. 1, pp. 36–46, 2008. View at Scopus
  72. J. M. Brenchley, T. W. Schacker, L. E. Ruff et al., “CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract,” Journal of Experimental Medicine, vol. 200, no. 6, pp. 749–759, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. J. M. Brenchley, D. A. Price, T. W. Schacker et al., “Microbial translocation is a cause of systemic immune activation in chronic HIV infection,” Nature Medicine, vol. 12, no. 12, pp. 1365–1371, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. W. Jiang, M. M. Lederman, P. Hunt et al., “Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection,” Journal of Infectious Diseases, vol. 199, no. 8, pp. 1177–1185, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. V. D. Gonzalez, K. Falconer, K. G. Blom et al., “High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment,” Journal of Virology, vol. 83, no. 21, pp. 11407–11411, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. G. Greub, B. Ledergerber, M. Battegay et al., “Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the swiss HIV cohort study,” The Lancet, vol. 356, no. 9244, pp. 1800–1805, 2000. View at Scopus
  77. M. Potter, A. Odueyungbo, H. Yang, S. Saeed, and M. B. Klein, “Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy,” AIDS, vol. 24, no. 12, pp. 1857–1865, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. M. C. Villacres, S. F. Lacey, C. La Rosa et al., “Human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy maintain activated CD8+ T cell subsets as a strong adaptive immune response to cytomegalovirus,” Journal of Infectious Diseases, vol. 184, no. 3, pp. 256–267, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. J. M. Fletcher, M. Vukmanovic-Stejic, P. J. Dunne et al., “Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion,” Journal of Immunology, vol. 175, no. 12, pp. 8218–8225, 2005. View at Scopus
  80. L. Shen and R. F. Siliciano, “Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection,” Journal of Allergy and Clinical Immunology, vol. 122, no. 1, pp. 22–28, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. B. Joos, M. Fischer, H. Kuster et al., “HIV rebounds from latently infected cells, rather than from continuing low-level replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16725–16730, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. B. Dinoso, S. Y. Kim, A. M. Wiegand et al., “Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 23, pp. 9403–9408, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. D. McMahon, J. Jones, A. Wiegand et al., “Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy,” Clinical Infectious Diseases, vol. 50, no. 6, pp. 912–919, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. H. Hatano, T. L. Hayes, V. Dahl et al., “A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response,” Journal of Infectious Diseases, vol. 203, no. 7, pp. 960–968, 2011. View at Publisher · View at Google Scholar · View at PubMed
  85. R. T. Gandhi, L. Zheng, R. J. Bosch et al., “The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial,” PLoS Medicine, vol. 7, no. 8, Article ID e1000321, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. F. Maldarelli, S. Palmer, M. S. King et al., “ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia,” PLoS Pathogens, vol. 3, no. 4, article e46, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. M. E. Sharkey, I. Teo, T. Greenough et al., “Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy,” Nature Medicine, vol. 6, no. 1, pp. 76–81, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. J Buzón, M. Massanella, J. M. Llibre et al., “HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects,” Nature Medicine, vol. 16, no. 4, pp. 460–465, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. N. Chomont, M. El-Far, P. Ancuta et al., “HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation,” Nature Medicine, vol. 15, no. 8, pp. 893–900, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. M. J. Churchill, P. R. Gorry, D. Cowley et al., “Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues,” Journal of NeuroVirology, vol. 12, no. 2, pp. 146–152, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. P. Gorry, D. Purcell, J. Howard, and D. McPhee, “Restricted HIV-1 infection of human astrocytes: potential role of nef in the regulation of virus replication,” Journal of NeuroVirology, vol. 4, no. 4, pp. 377–386, 1998. View at Scopus
  92. P. J. Ellery, E. Tippett, Y. L. Chiu et al., “The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo,” Journal of Immunology, vol. 178, no. 10, pp. 6581–6589, 2007. View at Scopus
  93. J. Dai, L. M. Agosto, C. Baytop et al., “Human immunodeficiency virus integrates directly into naïve resting CD4+ T cells but enters naïve cells less efficiently than memory cells,” Journal of Virology, vol. 83, no. 9, pp. 4528–4537, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. F. Wightman, A. Solomon, G. Khoury et al., “Both CD31+and CD31- naive CD4+ T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy,” Journal of Infectious Diseases, vol. 202, no. 11, pp. 1738–1748, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. D. G. Brooks, S. G. Kitchen, C. M. R. Kitchen, D. D. Scripture-Adams, and J. A. Zack, “Generation of HIV latency during thymopoiesis,” Nature Medicine, vol. 7, no. 4, pp. 459–464, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. T. W. Chun, D. C. Nickle, J. S. Justement et al., “Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy,” Journal of Infectious Diseases, vol. 197, no. 5, pp. 714–720, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. C. K. Petito, “Human immunodeficiency virus type 1 compartmentalization in the central nervous system,” Journal of NeuroVirology, vol. 10, no. 1, pp. 21–24, 2004. View at Scopus
  98. P. M. Sheth, C. Kovacs, K. S. Kemal et al., “Persistent HIV RNA shedding in semen despite effective antiretroviral therapy,” AIDS, vol. 23, no. 15, pp. 2050–2054, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. G. Nunnari, D. Leto, J. Sullivan et al., “Seminal reservoirs during an HIV type 1 eradication trial,” AIDS Research and Human Retroviruses, vol. 21, no. 9, pp. 768–775, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. G. Nunnari, J. Sullivan, Y. Xu et al., “HIV type 1 cervicovaginal reservoirs in the era of HAART,” AIDS Research and Human Retroviruses, vol. 21, no. 8, pp. 714–718, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. J. D. Siliciano, J. Kajdas, D. Finzi et al., “Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells,” Nature Medicine, vol. 9, no. 6, pp. 727–728, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. K. K. Koelsch, L. Liu, R. Haubrich et al., “Dynamics of total, linear nonintegrated, and integrated HIV-1 DNA in vivo and in vitro,” Journal of Infectious Diseases, vol. 197, no. 3, pp. 411–419, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. A. O. Pasternak, S. Jurriaans, M. Bakker, J. M. Prins, B. Berkhout, and V. V. Lukashov, “Cellular levels of HIV unspliced RNA from patients on combination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome,” PLoS One, vol. 4, no. 12, Article ID e8490, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. G. d'Ettorre, M. Paiardini, L. Zaffiri et al., “HIV persistence in the gut mucosa of HIV-infected subjects undergoing antiretroviral therapy correlates with immune activation and increased levels of LPS,” Current HIV Research, vol. 9, no. 3, pp. 148–153, 2011. View at Publisher · View at Google Scholar
  105. J. Neuhaus, D. R. Jacobs, J. V. Baker et al., “Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection,” Journal of Infectious Diseases, vol. 201, no. 12, pp. 1788–1795, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. L. H. Kuller, R. Tracy, W. Belloso et al., “Inflammatory and coagulation biomarkers and mortality in patients with HIV infection,” PLoS Medicine, vol. 5, no. 10, article e203, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. A. Eastburn, R. Scherzer, A. R. Zolopa et al., “Association of low level viremia with inflammation and mortality in HIV-infected adults,” PLoS One, vol. 6, no. 11, Article ID e26320, 2011. View at Publisher · View at Google Scholar · View at PubMed
  108. M. J. Mugavero, S. Napravnik, S. R. Cole et al., “Viremia copy-years predicts mortality among treatment-naive HIV-infected patients initiating antiretroviral therapy,” Clinical Infectious Diseases, vol. 53, no. 9, pp. 927–935, 2011. View at Publisher · View at Google Scholar · View at PubMed
  109. S. R. Cole, S. Napravnik, M. J. Mugavero, B. Lau, J. Eron, and M. S. Saag, “Copy-years viremia as a measure of cumulative human immunodeficiency virus viral burden,” American Journal of Epidemiology, vol. 171, no. 2, pp. 198–205, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. C. Argyropoulos and A. Mouzaki, “Immunosuppressive drugs in HIV disease,” Current Topics in Medicinal Chemistry, vol. 6, no. 16, pp. 1769–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Wilkin, C. Lalama, A. R. Tenorio, et al., “Maraviroc intensification for suboptimal CD4+ cell response despite sustained virologic suppression: ATCG 5256,” in Proceedings of the 17th Conference on Retroviruses and Opportunistic Infections, San Francisco, Calif, USA, February 2010, Abstract 285.
  112. C. Gutierrez, L. Diaz, B. Hernandez-Novoa, et al., “Effect of the intensification with a CCR5 antagonist on the decay of the HIV-1 latent reservoir and residual viremia,” in Proceedings of the 17th Conference on Retroviruses and Opportunistic Infections, San Francisco, Calif, USA, February 2010, Abstract 284.
  113. J. Sierra-Madero, G. Di Perri, R. Wood et al., “Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study,” HIV Clinical Trials, vol. 11, no. 3, pp. 125–132, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. S. De Wit, M. Delforge, C. V. Necsoi, and N. Clumeck, “Downregulation of CD38 activation markers by atorvastatin in HIV patients with undetectable viral load,” AIDS, vol. 25, no. 10, pp. 1332–1333, 2011. View at Publisher · View at Google Scholar · View at PubMed
  115. E. Czeslick, A. Struppert, A. Simm, and A. Sablotzki, “E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes,” Inflammation Research, vol. 55, no. 11, pp. 511–515, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. N. C. Connolly, S. A. Riddler, and C. R. Rinaldo, “Proinflammatory cytokines in HIV disease—a review and rationale for new therapeutic approaches,” AIDS Reviews, vol. 7, no. 3, pp. 168–180, 2005. View at Scopus
  117. S. Piconi, S. Parisotto, G. Rizzardini et al., “Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders,” Blood, vol. 118, no. 12, pp. 3263–3272, 2011. View at Publisher · View at Google Scholar · View at PubMed
  118. R. T. Davey, R. L. Murphy, F. M. Graziano et al., “Immunologic and virologic effects of subcutaneous interleukin 2 in combination with antiretroviral therapy: a randomized controlled trial,” JAMA, vol. 284, no. 2, pp. 183–189, 2000. View at Scopus
  119. C. Katlama, G. Carcelain, C. Duvivier et al., “Interleukin-2 accelerates CD4 cell reconstitution in HIV-infected patients with severe immunosuppression despite highly active antiretroviral therapy: the ILSTIM study—ANRS 082,” AIDS, vol. 16, no. 15, pp. 2027–2034, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Levy, C. Durier, R. Krzysiek et al., “Effects of interleukin-2 therapy combined with highly active antiretroviral therapy on immune restoration in HIV-1 infection: a randomized controlled trial,” AIDS, vol. 17, no. 3, pp. 343–351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Paredes, J. C. López Bernaldo De Quirós, E. Fernández-Cruz, B. Clotet, and H. C. Lane, “The potential role of interleukin-2 in patients with HIV infection,” AIDS Reviews, vol. 4, no. 1, pp. 36–40, 2002.
  122. L. Caggiari, S. Zanussi, M. T. Bortolin et al., “Effects of therapy with highly active anti-retroviral therapy (HAART) and IL-2 on CD4+ and CD8+ lymphocyte apoptosis in HIV+ patients,” Clinical and Experimental Immunology, vol. 120, no. 1, pp. 101–106, 2000. View at Scopus
  123. W. Zou, A. Fousst, C. Capitant et al., “Acute activation of CD8+ T lymphocytes in interleukin-2—treated HIV- infected patients,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 22, no. 1, pp. 31–38, 1999.
  124. J. Kutza, M. P. Hayes, and K. A. Clouse, “Interleukin-2 inhibits HIV-1 replication in human macrophages by modulating expression of CD4 and CC-chemokine receptor-5,” AIDS, vol. 12, no. 8, pp. F59–F64, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Abrams, Y. Lévy, M. H. Losso et al., “Interleukin-2 therapy in patients with HIV infection,” The New England Journal of Medicine, vol. 361, no. 16, pp. 1548–1559, 2009. View at Publisher · View at Google Scholar · View at PubMed
  126. S. Emery, D. I. Abrams, D. A. Cooper et al., “The Evaluation of Subcutaneous Proleukin® (interleukin-2) in a Randomized International Trial: rationale, design, and methods of ESPRIT,” Controlled Clinical Trials, vol. 23, no. 2, pp. 198–220, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. Levy, C. Lacabaratz, L. Weiss et al., “Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment,” The Journal of Clinical Investigation, vol. 119, no. 4, pp. 997–1007, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. C. L. Mackall, T. J. Fry, C. Bare, P. Morgan, A. Galbraith, and R. E. Gress, “IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation,” Blood, vol. 97, no. 5, pp. 1491–1497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Oliva, A. L. Kinter, M. Vaccarezza et al., “Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro,” The Journal of Clinical Investigation, vol. 102, no. 1, pp. 223–231, 1998. View at Scopus
  130. M. Prlic, B. R. Blazar, M. A. Farrar, and S. C. Jameson, “In vivo survival and homeostatic proliferation of natural killer cells,” Journal of Experimental Medicine, vol. 197, no. 8, pp. 967–976, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. G. D'Ettorre, M. Andreotti, G. Ceccarelli et al., “The role of IL-15 in challenging Acquired Immunodeficiency Syndrome,” Cytokine, vol. 57, no. 1, pp. 54–60, 2012. View at Publisher · View at Google Scholar · View at PubMed
  132. G. D'Ettorre, M. Andreotti, M. Carnevalini et al., “Interleukin-15 enhances the secretion of IFN-γ and CC chemokines by natural killer cells from HIV viremic and aviremic patients,” Immunology Letters, vol. 103, no. 2, pp. 192–195, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. M. Tarkowski, L. Ferraris, S. Martone, et al., “Expression of interleukin-15 and interleukin-15Rα in monocytes of HIV type 1-infected patients with different courses of disease progression,” AIDS Research and Human Retroviruses. In press.
  134. I. Sereti, R. M. Dunham, J. Spritzler et al., “IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection,” Blood, vol. 113, no. 25, pp. 6304–6314, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. F. X. Wang, Y. Xu, J. Sullivan et al., “IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART,” The Journal of Clinical Investigation, vol. 115, no. 1, pp. 128–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. C. Vandergeeten, S. DaFonseca, R. Fromentin, et al., “Differential impact of IL-7 and IL-15 on HIV reservoir persistence,” in Proceedings of the 5th International Workshop on HIV Persistence during Therapy, St Maarten, West Indies, December 2011, Abstract 29.
  137. N. M. Archin, K. S. Keedy, A. Espeseth, H. Dang, D. J. Hazuda, and D. M. Margolis, “Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors,” AIDS, vol. 23, no. 14, pp. 1799–1806, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. L. Ylisastigui, N. M. Archin, G. Lehrman, R. J. Bosch, and D. M. Margolis, “Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression,” AIDS, vol. 18, no. 8, pp. 1101–1108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. N. M. Archin, J. J. Eron, S. Palmer et al., “Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells,” AIDS, vol. 22, no. 10, pp. 1131–1135, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. N. Sagot-Lerolle, A. Lamine, M. L. Chaix et al., “Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir,” AIDS, vol. 22, no. 10, pp. 1125–1129, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. J. D. Siliciano, J. Lai, M. Callender et al., “Stability of the latent reservoir for HIV-1 in patients receiving valproic acid,” Journal of Infectious Diseases, vol. 195, no. 6, pp. 833–836, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. J. Kulkosky, D. M. Culnan, J. Roman et al., “Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART,” Blood, vol. 98, no. 10, pp. 3006–3015, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Reuse, M. Calao, K. Kabeya et al., “Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection,” PLoS One, vol. 4, no. 6, Article ID e6093, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. R. Mehla, S. Bivalkar-Mehla, R. Zhang et al., “Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner,” PLoS One, vol. 5, no. 6, Article ID e11160, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. J. Blazkova, K. Trejbalova, F. Gondois-Rey et al., “CpG methylation controls reactivation of HIV from latency,” PLoS Pathogens, vol. 5, no. 8, Article ID e1000554, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. S. E. Kauder, A. Bosque, A. Lindqvist, V. Planelles, and E. Verdin, “Epigenetic regulation of HIV-1 latency by cytosine methylation,” PLoS Pathogens, vol. 5, no. 6, Article ID e1000495, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. M. G. Lewis, S. Dafonseca, N. Chomont et al., “Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension,” AIDS, vol. 25, no. 11, pp. 1347–1356, 2011. View at Publisher · View at Google Scholar · View at PubMed
  148. B. Ensoli, S. Bellino, A. Tripiciano et al., “Therapeutic immunization with hiv-1 tat reduces immune activation and loss of regulatory t-cells and improves immune function in subjects on HAART,” PLoS One, vol. 5, no. 11, Article ID e13540, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. B. Autran, R. L. Murphy, D. Costagliola et al., “Greater viral rebound and reduced time to resume antiretroviral therapy after therapeutic immunization with the ALVAC-HIV vaccine (vCP1452),” AIDS, vol. 22, no. 11, pp. 1313–1322, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus