About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 543085, 10 pages
http://dx.doi.org/10.1155/2012/543085
Research Article

Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

1Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
2Department of Clinical Genetics, Academic Hospital Maastricht, 6202 AZ Maastricht, The Netherlands
3Department of Pulmonary Diseases, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
4Department of Laboratory Medicine, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
5Department of Hematology, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
6Department of Hematology, University Medical Center, 3508 GA Utrecht, The Netherlands

Received 24 July 2012; Revised 30 November 2012; Accepted 5 December 2012

Academic Editor: Rossana Cavallo

Copyright © 2012 A. E. Greijer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Ibrahim and K. N. Naresh, “Posttransplant lymphoproliferative disorders,” Advances in Hematology, vol. 2012, Article ID 230173, 11 pages, 2012. View at Publisher · View at Google Scholar
  2. J. P. Nourse, K. Jones, and M. K. Gandhi, “Epstein-Barr virus-related post-transplant lymphoproliferative disorders: pathogenetic insights for targeted therapy,” American Journal of Transplantation, vol. 11, no. 5, pp. 888–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Middeldorp, A. A. T. P. Brink, A. J. C. Van den Brule, and C. J. L. M. Meijer, “Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders,” Critical Reviews in Oncology/Hematology, vol. 45, no. 1, pp. 1–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Oudejans, M. Jiwa, A. J. C. Van den Brule et al., “Detection of heterogeneous Epstein-Barr virus gene expression patterns within individual post-transplantation lymphoproliferative disorders,” American Journal of Pathology, vol. 147, no. 4, pp. 923–933, 1995. View at Scopus
  5. A. A. T. P. Brink, D. F. Dukers, A. J. C. Van Den Brule et al., “Presence of Epstein-Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas,” Journal of Clinical Pathology, vol. 50, no. 11, pp. 911–918, 1997. View at Scopus
  6. D. Rea, C. Fourcade, V. Leblond et al., “Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation,” Transplantation, vol. 58, no. 3, pp. 317–324, 1994. View at Scopus
  7. T. Haque and D. H. Crawford, “Role of donor versus recipient type Epstein-Barr virus in post-transplant lymphoproliferative disorders,” Springer Seminars in Immunopathology, vol. 20, no. 3-4, pp. 375–387, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Gratama, M. A. P. Oosterveer, F. E. Zwaan, J. Lepoutre, G. Klein, and I. Ernberg, “Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 22, pp. 8693–8696, 1988. View at Scopus
  9. E. Meijer and J. J. Cornelissen, “Epstein-Barr virus-associated lymphoproliferative disease after allogeneic haematopoietic stem cell transplantation: molecular monitoring and early treatment of high-risk patients,” Current Opinion in Hematology, vol. 15, no. 6, pp. 576–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kimura, Y. Ito, R. Suzuki, and Y. Nishiyama, “Measuring Epstein-Barr virus (EBV) load: the significance and application for each EBV-associated disease,” Reviews in Medical Virology, vol. 18, no. 5, pp. 305–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. C. Stevens, E. A. M. Verschuuren, I. Pronk et al., “Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients,” Blood, vol. 97, no. 5, pp. 1165–1171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Middeldorp, “Molecular diagnosis of viral infections in renal transplant recipients,” Current Opinion in Nephrology and Hypertension, vol. 11, no. 6, pp. 665–672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Thorley-Lawson, E. M. Miyashita, and G. Khan, “Epstein-Barr virus and the B cell: that's all it takes,” Trends in Microbiology, vol. 4, no. 5, pp. 204–208, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Babcock, L. L. Decker, R. B. Freeman, and D. A. Thorley-Lawson, “Epstein-Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients,” Journal of Experimental Medicine, vol. 190, no. 4, pp. 567–576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Hochberg, J. M. Middeldorp, M. Catalina, J. L. Sullivan, K. Luzuriaga, and D. A. Thorley-Lawson, “Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 239–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. O. Guerreiro-Cacais, L. Q. Li, D. Donati et al., “Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication,” Journal of General Virology, vol. 85, no. 10, pp. 2767–2778, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. Knol, G. Quéreux, M. C. Pandolfino, A. Khammari, and B. Dreno, “Presence of Epstein-Barr virus in Langerhans cells of CTCL lesions,” Journal of Investigative Dermatology, vol. 124, no. 1, pp. 280–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tugizov, R. Herrera, P. Veluppillai, J. Greenspan, D. Greenspan, and J. M. Palefsky, “Epstein-Barr virus (EBV)-infected monocytes facilitate dissemination of EBV within the oral mucosal epithelium,” Journal of Virology, vol. 81, no. 11, pp. 5484–5496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. S. Hsieh, M. V. Lemas, and R. F. Ambinder, “The biology of Epstein-Barr virus in post-transplant lymphoproliferative disease,” Transplant Infectious Disease, vol. 1, no. 3, pp. 204–212, 1999. View at Scopus
  20. G. K. Hong, M. L. Gulley, W. H. Feng, H. J. Delecluse, E. Holley-Guthrie, and S. C. Kenney, “Epstein-barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model,” Journal of Virology, vol. 79, no. 22, pp. 13993–14003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Jones, W. T. Seaman, W. H. Feng et al., “Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease,” International Journal of Cancer, vol. 121, no. 6, pp. 1274–1281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. Bakker, E. A. M. Verschuuren, M. E. Erasmus et al., “Epstein-Barr virus-DNA load monitoring late after lung transplantation: a surrogate marker of the degree of immunosuppression and a safe guide to reduce immunosuppression,” Transplantation, vol. 83, no. 4, pp. 433–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. W. J. Van Esser, B. Van Der Holt, E. Meijer et al., “Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT,” Blood, vol. 98, no. 4, pp. 972–978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. C. Stevens, E. A. M. Verschuuren, S. A. W. M. Verkuijlen, A. J. C. Van Den Brule, C. J. L. M. Meijer, and J. M. Middeldorp, “Role of Epstein-Barr virus DNA load monitoring in prevention and early detection of post-transplant lymphoproliferative disease,” Leukemia and Lymphoma, vol. 43, no. 4, pp. 831–840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Boom, C. Sol, M. Beld, J. Weel, J. Goudsmit, and P. Wertheim-Van Dillen, “Improved silica-guanidiniumthiocyanate DNA isolation procedure based on selective binding of bovine alpha-casein to silica particles,” Journal of Clinical Microbiology, vol. 37, no. 3, pp. 615–619, 1999. View at Scopus
  26. S. J. Stevens, S. A. Verkuijlen, and J. M. Middeldorp, “Quantitative detection of Epstein-Barr virus DNA in clinical specimens by rapid real-time PCR targeting a highly conserved region of EBNA-1,” Methods in Molecular Biology, vol. 292, pp. 15–26, 2005. View at Scopus
  27. S. J. C. Stevens, S. A. W. M. Verkuijlen, B. Hariwiyanto et al., “Diagnostic value of measuring Epstein-Barr virus (EBV) DNA load and carcinoma-specific viral mRNA in relation to anti-EBV immunoglobulin A (IgA) and IgG antibody levels in blood of nasopharyngeal carcinoma patients from Indonesia,” Journal of Clinical Microbiology, vol. 43, no. 7, pp. 3066–3073, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Stevens, A. A. Brink, and J. M. Middeldorp, “Profiling of Epstein-Barr virus latent RNA expression in clinical specimens by gene-specific multiprimed cDNA synthesis and PCR,” Methods in Molecular Biology, vol. 292, pp. 27–38, 2005. View at Scopus
  29. P. A. Hopwood, L. Brooks, R. Parratt et al., “Persistent Epstein-Barr virus infection: unrestricted latent and lytic viral gene expression in healthy immunosuppressed transplant recipients,” Transplantation, vol. 74, no. 2, pp. 194–202, 2002. View at Scopus
  30. L. Qu, M. Green, S. Webber, J. Reyes, D. Ellis, and D. Rowe, “Epstein-Barr virus gene expression in the peripheral blood of transplant recipients with persistent circulating virus loads,” Journal of Infectious Diseases, vol. 182, no. 4, pp. 1013–1021, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Bingler, B. Feingold, S. A. Miller et al., “Chronic high Epstein-Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children,” American Journal of Transplantation, vol. 8, no. 2, pp. 442–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. J. Van Esser, H. G. M. Niesters, B. Van Der Holt et al., “Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation,” Blood, vol. 99, no. 12, pp. 4364–4369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Leung, B. K. Shenton, K. Green et al., “Dynamic EBV gene loads in renal, hepatic, and cardiothoracic transplant recipients as determined by real-time PCR light cycler,” Transplant Infectious Disease, vol. 6, no. 4, pp. 156–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Clave, F. Agbalika, V. Bajzik et al., “Epstein-Barr Virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T-cell reconstitution and rituximab therapy,” Transplantation, vol. 77, no. 1, pp. 76–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. J. C. Stevens, I. Pronk, and J. M. Middeldorp, “Toward standardization of Epstein-Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen,” Journal of Clinical Microbiology, vol. 39, no. 4, pp. 1211–1216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. J. Van Esser, H. G. M. Niesters, S. F. T. Thijsen et al., “Molecular quantification of viral load in plasma allows for fast and accurate prediction of response to therapy of Epstein-Barr virus-associated lymphoproliferative disease after allogeneic stem cell transplantation,” British Journal of Haematology, vol. 113, no. 3, pp. 814–821, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Wadowsky, S. Laus, M. Green, S. A. Webber, and D. Rowe, “Measurement of Epstein-Barr Virus DNA Loads in Whole Blood and Plasma by TaqMan PCR and in Peripheral Blood Lymphocytes by Competitive PCR,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5245–5249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. K. C. A. Chan, J. Zhang, A. T. C. Chan et al., “Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients,” Cancer Research, vol. 63, no. 9, pp. 2028–2032, 2003. View at Scopus
  39. J. L. Ryan, H. Fan, L. J. Swinnen et al., “Epstein-Barr Virus (EBV) DNA in plasma is not encapsidated in patients with EBV-related malignancies,” Diagnostic Molecular Pathology, vol. 13, no. 2, pp. 61–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. N. A. Bakker, E. A. Verschuuren, N. J. Veeger et al., “Quantification of Epstein-Barr Virus-DNA load in lung transplant recipients: a comparison of plasma versus whole blood,” Journal of Heart and Lung Transplantation, vol. 27, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Merlino, R. Cavallo, M. Bergallo et al., “Epstein Barr viral load monitoring by quantitative PCR in renal transplant patients,” New Microbiologica, vol. 26, no. 2, pp. 141–149, 2003. View at Scopus
  42. D. E. Tsai, M. Nearey, C. L. Hardy et al., “Use of EBV PCR for the diagnosis and monitoring of post-transplant lymphoproliferative disorder in adult solid organ transplant patients,” American Journal of Transplantation, vol. 2, no. 10, pp. 946–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. J. Wagner, M. Hornef, J. Middeldorp, and H. Kirchner, “Characteristics of viral protein expressed by Epstein-Barr virus-infected B cells in peripheral blood of patients with infectious mononucleosis,” Clinical and Diagnostic Laboratory Immunology, vol. 2, no. 6, pp. 696–699, 1995. View at Scopus
  44. M. Savard, C. Bélanger, M. Tardif, P. Gourde, L. Flamand, and J. Gosselin, “Infection of primary human monocytes by Epstein-Barr virus,” Journal of Virology, vol. 74, no. 6, pp. 2612–2619, 2000. View at Publisher · View at Google Scholar · View at Scopus