About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 560817, 13 pages
http://dx.doi.org/10.1155/2012/560817
Research Article

New Insights into the Immunological Changes in IL-10-Deficient Mice during the Course of Spontaneous Inflammation in the Gut Mucosa

1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
2Departamento de Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
3Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
4Gastrointestinal Research Group, Department of Physiology and Pharmacology, University of Calgary, 2500 University Dr. NW T2N 4N1, Calgary, AB, Canada

Received 16 May 2011; Accepted 15 October 2011

Academic Editor: Noriko Tsuji

Copyright © 2012 Ana Cristina Gomes-Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mayer, “Mucosal immunity,” Immunological Reviews, vol. 206, p. 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Brandtzaeg, “Development and basic mechanisms of human gut immunity,” Nutrition Reviews, vol. 56, no. 1, pp. S5–S18, 1998. View at Scopus
  3. S. R. Gill, M. Pop, R. T. DeBoy et al., “Metagenomic analysis of the human distal gut microbiome,” Science, vol. 312, no. 5778, pp. 1355–1359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Menezes, D. S. Mucida, D. C. Cara et al., “Stimulation by food proteins plays a critical role in the maturation of the immune system,” International Immunology, vol. 15, no. 3, pp. 447–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Gordon and L. Pesti, “The gnotobiotic animal as a tool in the study of host microbial relationships,” Bacteriological Reviews, vol. 35, no. 4, pp. 390–429, 1971. View at Scopus
  6. A. M. Faria and H. L. Weiner, “Oral tolerance,” Immunological Reviews, vol. 206, pp. 232–259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. M. Vaz, M. J. Rios, L. M. Lopes et al., “Genetics of susceptibility to oral tolerance to ovalbumin,” The Brazilian Journal of Medical and Biological Research, vol. 20, no. 6, pp. 785–790, 1987. View at Scopus
  8. W. Strober, I. J. Fuss, and R. S. Blumberg, “The immunology of mucosal models of inflammation,” Annual Review of Immunology, vol. 20, pp. 495–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. B. Sartor, “Pathogenesis and immune mechanisms of chronic Inflammatory Bowel Diseases,” The American Journal of Gastroenterology, vol. 92, no. 12, supplement, pp. 5S–11S, 1997. View at Scopus
  10. R. Duchmann, I. Kaiser, E. Hermann, W. Mayet, K. Ewe, and K. H. Meyer Zum Buschenfelde, “Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD),” Clinical and Experimental Immunology, vol. 102, no. 3, pp. 448–455, 1995. View at Scopus
  11. F. Powrie, M. W. Leach, S. Mauze, L. B. Caddle, and R. L. Coffman, “Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice,” International Immunology, vol. 5, no. 11, pp. 1461–1471, 1993. View at Scopus
  12. C. Asseman, S. Mauze, M. W. Leach, R. L. Coffman, and F. Powrie, “An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation,” Journal of Experimental Medicine, vol. 190, no. 7, pp. 995–1004, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Skeen, M. A. Miller, T. M. Shinnick, and H. Kirk Ziegler, “Regulation of murine macrophage IL-12 production: activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines,” Journal of Immunology, vol. 156, no. 3, pp. 1196–1206, 1996. View at Scopus
  14. K. W. Moore, R. de Waal Malefyt, R. L. Coffman, and A. O'Garra, “Interleukin-10 and the interleukin-10 receptor,” Annual Review of Immunology, vol. 19, pp. 683–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Kuhn, J. Lohler, D. Rennick, K. Rajewsky, and W. Muller, “Interleukin-10-deficient mice develop chronic enterocolitis,” Cell, vol. 75, no. 2, pp. 263–274, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. R. K. Sellon, S. Tonkonogy, M. Schultz et al., “Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice,” Infection and Immunity, vol. 66, no. 11, pp. 5224–5231, 1998. View at Scopus
  17. N. J. Davidson, M. W. Leach, M. M. Fort et al., “T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice,” Journal of Experimental Medicine, vol. 184, no. 1, pp. 241–251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kawachi, S. Jennings, J. Panes et al., “Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice,” The American Journal of Physiology, vol. 278, no. 5, pp. G734–G743, 2000. View at Scopus
  19. D. J. Berg, N. Davidson, R. Kuhn et al., “Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ Th1-like responses,” Journal of Clinical Investigation, vol. 98, no. 4, pp. 1010–1020, 1996. View at Scopus
  20. D. K. Podolsky, “Inflammatory bowel disease (1),” The New England Journal of Medicine, vol. 325, pp. 928–937, 1991.
  21. L. Ohman, L. Franzen, U. Rudolph, G. R. Harriman, and H. E. Hultgren, “Immune activation in the intestinal mucosa before the onset of colitis in Galphai2-deficient mice,” Scandinavian Journal of Immunology, vol. 52, no. 1, pp. 80–90, 2000.
  22. T. M. Kundig, H. Schorle, M. F. Bachmann, H. Hengartner, R. M. Zinkernagel, and I. Horak, “Immune responses in interleukin-2-deficient mice,” Science, vol. 262, no. 5136, pp. 1059–1061, 1993. View at Scopus
  23. D. M. McCafferty, E. Sihota, M. Muscara, J. L. Wallace, K. A. Sharkey, and P. Kubes, “Spontaneously developing chronic colitis in IL-10/iNOS double-deficient mice,” The American Journal of Physiology, vol. 279, no. 1, pp. G90–G99, 2000. View at Scopus
  24. M. D. J. Davies and D. M. Parrott, “Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine,” Gut, vol. 22, no. 6, pp. 481–488, 1981. View at Scopus
  25. F. Lambolez, M. Kronenberg, and H. Cheroutre, “Thymic differentiation of TCRαβ+ CD8αα + IELs,” Immunological Reviews, vol. 215, no. 1, pp. 178–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Mahler and E. H. Leiter, “Genetic and environmental context determines the course of colitis developing in IL-10-deficient mice,” Inflammatory Bowel Diseases, vol. 8, no. 5, pp. 347–355, 2002. View at Scopus
  27. A. Ramachandran, M. Madesh, and K. A. Balasubramanian, “Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions,” Journal of Gastroenterology and Hepatology, vol. 15, no. 2, pp. 109–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Kapp, L. M. Kapp, K. C. Mckenna, and J. P. Lake, “γδ T-cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo,” Immunology, vol. 111, no. 2, pp. 155–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Ke, K. Pearce, J. P. Lake, H. K. Ziegler, and J. A. Kapp, “Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance,” Journal of Immunology, vol. 158, no. 8, pp. 3610–3618, 1997.
  30. Y. Chen, K. Chou, E. Fuchs, W. L. Havran, and R. Boismenu, “Protection of the intestinal mucosa by intraepithelial γδ T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14338–14343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. F. Santiago, A. C. Alves, R. P. Oliveira, et al., “Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa,” Immunobiology, vol. 216, no. 10, pp. 1085–1093, 2011.
  32. N. J. Davidson, S. A. Hudak, R. E. Lesley, S. Menon, M. W. Leach, and D. M. Rennick, “IL-12, but not IFN-γ, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice,” Journal of Immunology, vol. 161, no. 6, pp. 3143–3149, 1998. View at Scopus
  33. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Feng, H. Qin, L. Wang, E. N. Benveniste, C. O. Elson, and Y. Cong, “Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production,” Journal of Immunology, vol. 186, no. 11, pp. 6313–6318, 2011.
  35. Y. Mikami, T. Kanai, T. Sujino et al., “Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis,” European Journal of Immunology, vol. 40, no. 9, pp. 2409–2422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 209–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Izcue, J. L. Coombes, and F. Powrie, “Regulatory lymphocytes and intestinal inflammation,” Annual Review of Immunology, vol. 27, pp. 313–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Murai, O. Turovskaya, G. Kim et al., “Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis,” Nature Immunology, vol. 10, no. 11, pp. 1178–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Nakamura, A. Kitani, I. Fuss et al., “TGF-β1 plays an important role in the mechanism of CD4 +CD25+ regulatory T cell activity in both humans and mice,” Journal of Immunology, vol. 172, no. 2, pp. 834–842, 2004. View at Scopus
  40. R. Gandhi, M. F. Farez, Y. Wang, D. Kozoriz, F. J. Quintana, and H. L. Weiner, “Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset,” Journal of Immunology, vol. 184, no. 9, pp. 4620–4624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Sadlack, H. Merz, H. Schorle, A. Schimpl, A. C. Feller, and I. Horak, “Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene,” Cell, vol. 75, no. 2, pp. 253–261, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. L. S. Berberian, Y. Valles-Ayoub, L. K. Gordon, S. R. Targan, and J. Braun, “Expression of a novel autoantibody defined by the V(H)3-15 gene in inflammatory bowel disease and Campylobacter jejuni enterocolitis,” Journal of Immunology, vol. 153, no. 8, pp. 3756–3763, 1994. View at Scopus
  43. K. Hayakawa, R. R. Hardy, D. R. Parks, and L. A. Herzenberg, “The 'Ly-1 B' cell subpopulation in normal, immunodefective, and autoimmune mice,” Journal of Experimental Medicine, vol. 157, no. 1, pp. 202–218, 1983. View at Scopus
  44. L. A. Herzenberg, “B-1 cells: the lineage question revisited,” Immunological Reviews, vol. 175, pp. 9–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Fagarasan, R. Shinkura, T. Kamata, F. Nogaki, K. Ikuta, and T. Honjo, “Mechanism of B1 cell differentiation and migration in GALT,” Current Topics in Microbiology and Immunology, vol. 252, pp. 221–229, 2000. View at Scopus
  46. H. L. Weiner, A. P. da Cunha, F. Quintana, and H. Wu, “Oral tolerance,” Immunological Reviews, vol. 241, no. 1, pp. 241–259, 2011.
  47. L. V. Rizzo, R. A. Morawetz, N. E. Miller-Rivero et al., “IL-4 and IL-10 are both required for the induction of oral tolerance,” Journal of Immunology, vol. 162, no. 5, pp. 2613–2622, 1999. View at Scopus
  48. L. S. Aroeira, F. Cardillo, D. A. De Albuquerque, N. M. Vaz, and J. Mengel, “Anti-IL-10 treatment does not block either the induction or the maintenance of orally induced tolerance to OVA,” Scandinavian Journal of Immunology, vol. 41, no. 4, pp. 319–323, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. A. M. C. Faria, R. Maron, S. M. Ficker, A. J. Slavin, T. Spahn, and H. L. Weiner, “Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-β/interleukin-10 and suppression of experimental autoimmune encephalomyelitis,” Journal of Autoimmunity, vol. 20, no. 2, pp. 135–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Faria, S. M. Ficker, E. Speziali et al., “Aging affects oral tolerance induction but not its maintenance in mice,” Mechanisms of Ageing and Development, vol. 102, no. 1, pp. 67–80, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. M. C. Andrade, N. M. Vaz, and A. M. C. Faria, “Ethanol-induced colitis prevents oral tolerance induction in mice,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 9, pp. 1227–1232, 2003. View at Scopus
  52. A. C. Keller, D. Mucida, E. Gomes et al., “Hierarchical suppression of asthma-like responses by mucosal tolerance,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 283–290, 2006. View at Publisher · View at Google Scholar · View at Scopus