About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 606195, 12 pages
http://dx.doi.org/10.1155/2012/606195
Review Article

Clinical and Pathological Roles of Ro/SSA Autoantibody System

1Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
2Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Received 4 October 2012; Accepted 19 November 2012

Academic Editor: Dimitrios P. Bogdanos

Copyright © 2012 Ryusuke Yoshimi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. E. Prince and W. R. Hogrefe, “Evaluation of a line immunoblot assay for detection of antibodies recognizing extractable nuclear antigens,” Journal of Clinical Laboratory Analysis, vol. 12, no. 5, pp. 320–324, 1998.
  2. E. K. L. Chan and L. E. C. Andrade, “Antinuclear antibodies in Sjogren's syndrome,” Rheumatic Disease Clinics of North America, vol. 18, no. 3, pp. 551–570, 1992. View at Scopus
  3. C. A. von Muhlen and E. M. Tan, “Autoantibodies in the diagnosis of systemic rheumatic diseases,” Seminars in Arthritis and Rheumatism, vol. 24, no. 5, pp. 323–358, 1995. View at Scopus
  4. K. Yamamoto, “Pathogenesis of Sjogren's syndrome,” Autoimmunity Reviews, vol. 2, no. 1, pp. 13–18, 2003. View at Publisher · View at Google Scholar
  5. R. Kobayashi, S. Mii, T. Nakano, H. Harada, and H. Eto, “Neonatal lupus erythematosus in Japan: a review of the literature,” Autoimmunity Reviews, vol. 8, no. 6, pp. 462–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Wenzel, R. Gerdsen, M. Uerlich, R. Bauer, T. Bieber, and I. Boehm, “Antibodies targeting extractable nuclear antigens: historical development and current knowledge,” British Journal of Dermatology, vol. 145, no. 6, pp. 859–867, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Vitali, S. Bombardieri, R. Jonsson et al., “Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European consensus group,” Annals of the Rheumatic Diseases, vol. 61, no. 6, pp. 554–558, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Shiboski, C. H. Shiboski, L. Criswell, et al., “American College of Rheumatology classification criteria for Sjogren's syndrome: a data-driven, expert consensus approach in the Sjogren's International Collaborative Clinical Alliance cohort,” Arthritis Care and Research, vol. 64, no. 4, pp. 475–487, 2012. View at Publisher · View at Google Scholar
  9. J. R. Anderson, K. Gray, J. S. Beck, and W. F. Kinnear, “Precipitating autoantibodies in Sjogren's disease,” The Lancet, vol. 278, no. 7200, pp. 456–460, 1961. View at Scopus
  10. G. Clark, M. Reichlin, and T. B. Tomasi Jr., “Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythmatosus,” The Journal of Immunology, vol. 102, no. 1, pp. 117–122, 1969. View at Scopus
  11. M. Mattioli and M. Reichlin, “Heterogeneity of RNA protein antigens reactive with sera of patients with systemic lupus erythematosus. Description of a cytoplasmic nonribosomal antigen,” Arthritis and Rheumatism, vol. 17, no. 4, pp. 421–429, 1974. View at Scopus
  12. M. A. Alspaugh and E. M. Tan, “Antibodies to cellular antigens in Sjogren's syndrome,” The Journal of Clinical Investigation, vol. 55, no. 5, pp. 1067–1073, 1975. View at Scopus
  13. M. Akizuki, R. Powers, and H. R. Holman, “A soluble acidic protein of the cell nucleus which reacts with serum from patients with systemic lupus erythematosus and Sjogren's syndrome,” The Journal of Clinical Investigation, vol. 59, no. 2, pp. 264–272, 1977. View at Scopus
  14. M. Alspaugh and P. Maddison, “Resolution of the identity of certain antigen-antibody systems in systemic lupus erythematosus and Sjogren's syndrome: an interlaboratory collaboration,” Arthritis and Rheumatism, vol. 22, no. 7, pp. 796–798, 1979. View at Scopus
  15. J. Schulte-Pelkum, M. Fritzler, and M. Mahler, “Latest update on the Ro/SS-a autoantibody system,” Autoimmunity Reviews, vol. 8, no. 7, pp. 632–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Ghillani, C. André, C. Toly et al., “Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60kDa antibodies: results of a multicentric study,” Autoimmunity Reviews, vol. 10, no. 9, pp. 509–513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. B. Mond, M. G. E. Peterson, and N. F. Rothfield, “Correlation of anti-Ro antibody with photosensitivity rash in systemic lupus erythematosus patients,” Arthritis and Rheumatism, vol. 32, no. 2, pp. 202–204, 1989. View at Scopus
  18. G. Boire, H. A. Menard, M. Gendron, A. Lussier, and D. Myhal, “Rheumatoid arthritis: anti-Ro antibodies define a non-HLA-DR4 associated clinicoserological cluster,” The Journal of Rheumatology, vol. 20, no. 10, pp. 1654–1660, 1993. View at Scopus
  19. D. P. McCauliffe, “Cutaneous diseases in adults associated with Anti-Ro/SS-A autoantibody production,” Lupus, vol. 6, no. 2, pp. 158–166, 1997. View at Scopus
  20. M. C. Hochberg, R. E. Boyd, and J. M. Ahearn, “Systemic lupus erythematosus: a review of clinico-laboratory features and immunogenetic markers in 150 patients with emphasis on demographic subsets,” Medicine, vol. 64, no. 5, pp. 285–295, 1985. View at Scopus
  21. M. V. Fukuda, S. C. Lo, C. S. de Almeida, and S. K. Shinjo, “Anti-Ro antibody and cutaneous vasculitis in systemic lupus erythematosus,” Clinical Rheumatology, vol. 28, no. 3, pp. 301–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. L. Alexander, F. C. Arnett Jr., T. T. Provost, and M. B. Stevens, “Sjogren's syndrome: association of anti-Ro(SS-A) antibodies with vasculitis, hematologic abnormalities, and serologic hyperreactivity,” Annals of Internal Medicine, vol. 98, no. 2, pp. 155–159, 1983. View at Scopus
  23. J. B. Harley, E. L. Alexander, W. B. Bias, et al., “Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjogren's syndrome,” Arthritis and Rheumatism, vol. 29, no. 2, pp. 196–206, 1986. View at Scopus
  24. J. K. Chung, M. K. Kim, and W. R. Wee, “Prognostic factors for the clinical severity of keratoconjunctivitis sicca in patients with Sjogren's syndrome,” British Journal of Ophthalmology, vol. 96, no. 2, pp. 240–245, 2012. View at Publisher · View at Google Scholar
  25. R. Cimaz, D. L. Spence, L. Hornberger, and E. D. Silverman, “Incidence and spectrum of neonatal lupus erythematosus: a prospective study of infants born to mothers with anti-ro autoantibodies,” Journal of Pediatrics, vol. 142, no. 6, pp. 678–683, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Toker, S. Yavuz, and H. Direskeneli, “Anti-Ro/SSA and anti-La/SSB autoantibodies in the tear fluid of patients with Sjogren's syndrome,” British Journal of Ophthalmology, vol. 88, no. 3, pp. 384–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. Drosos, A. P. Andonopoulos, J. S. Costopoulos, E. D. Stavropoulos, C. S. Papadimitriou, and M. Moutsopoulos, “Sjogren's syndrome in progressive systemic sclerosis,” The Journal of Rheumatology, vol. 15, no. 6, pp. 965–968, 1988. View at Scopus
  28. I. Cavazzana, F. Franceschini, M. Quinzanini et al., “Anti-Ro/SSA antibodies in rheumatoid arthritis: clinical and immunologic associations,” Clinical and Experimental Rheumatology, vol. 24, no. 1, pp. 59–64, 2006. View at Scopus
  29. F. N. Skopouli, A. P. Andonopoulos, and H. M. Moutsopoulos, “Clinical implications of the presence of anti-Ro(SSA) antibodies in patients with rheumatoid arthritis,” Journal of Autoimmunity, vol. 1, no. 4, pp. 381–388, 1988. View at Scopus
  30. M. T. Hedgpeth and D. W. Boulware, “Interstitial pneumonitis in antinuclear antibody-negative systemic lupus erythematosus: a new clinical manifestation and possible association with anti-Ro (SS-A) antibodies,” Arthritis and Rheumatism, vol. 31, no. 4, pp. 545–548, 1988. View at Scopus
  31. T. T. Provost, R. Watson, and E. Simmons-O'Brien, “Anti-Ro(SS-A) antibody positive Sjogren's/lupus erythematosus overlap syndrome,” Lupus, vol. 6, no. 2, pp. 105–111, 1997. View at Scopus
  32. A. Parodi, P. Puiatti, and A. Rebora, “Serological profiles as prognostic clues for progressive systemic scleroderma: the Italian experience,” Dermatologica, vol. 183, no. 1, pp. 15–20, 1991. View at Scopus
  33. S. N. Breit, D. Cairns, A. Szentirmay et al., “The presence of Sjogren's syndrome is a major determinant of the pattern of interstitial lung disease in scleroderma and other connective tissue diseases,” The Journal of Rheumatology, vol. 16, no. 8, pp. 1043–1049, 1989. View at Scopus
  34. A. Vancsa, I. Csipo, J. Nemeth, K. Devenyi, L. Gergely, and K. Danko, “Characteristics of interstitial lung disease in SS-A positive/Jo-1 positive inflammatory myopathy patients,” Rheumatology International, vol. 29, no. 9, pp. 989–994, 2009.
  35. R. La Corte, A. Lo Mo Naco, A. Locaputo, F. Dolzani, and F. Trotta, “In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease,” Autoimmunity, vol. 39, no. 3, pp. 249–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. Buyon, E. Ben-Chetrit, S. Karp et al., “Acquired congenital heart block. Pattern of maternal antibody response to biochemically defined antigens of the SSA/Ro-SSB/La system in neonatal lupus,” The Journal of Clinical Investigation, vol. 84, no. 2, pp. 627–634, 1989. View at Scopus
  37. A. Brucato, M. Frassi, F. Franceschini, et al., “Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: a prospective study of 100 women,” Arthritis and Rheumatism, vol. 44, no. 8, pp. 1832–1835, 1832.
  38. E. Jaeggi, C. Laskin, R. Hamilton, J. Kingdom, and E. Silverman, “The importance of the level of maternal Anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus. A prospective study of 186 antibody-exposed fetuses and infants,” Journal of the American College of Cardiology, vol. 55, no. 24, pp. 2778–2784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Granito, P. Muratori, L. Muratori et al., “Antibodies to SS-A/Ro-52kD and centromere in autoimmune liver disease: a clue to diagnosis and prognosis of primary biliary cirrhosis,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 6, pp. 831–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. J. Montano-Loza, Z. Shums, G. L. Norman, and A. J. Czaja, “Prognostic implications of antibodies to Ro/SSA and soluble liver antigen in type 1 autoimmune hepatitis,” Liver International, vol. 32, no. 1, pp. 85–92, 2012. View at Publisher · View at Google Scholar
  41. S. A. Rutjes, W. T. M. Vree Egberts, P. Jongen, F. Van Den Hoogen, G. J. M. Pruijn, and W. J. Van Venrooij, “Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy,” Clinical and Experimental Immunology, vol. 109, no. 1, pp. 32–40, 1997. View at Scopus
  42. M. Kubo, H. Ihn, Y. Asano, K. Yamane, N. Yazawa, and K. Tamaki, “Prevalence of 52-kd and 60-kd Ro/SS-A autoantibodies in Japanese patients with polymyositis/dermatomyositis,” Journal of the American Academy of Dermatology, vol. 47, no. 1, pp. 148–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Franceschini, L. Cretti, M. Quinzanini, F. L. Rizzini, and R. Cattaneo, “Deforming arthropathy of the hands in systemic lupus erythematosus is associated with antibodies to SSA/Ro and to SSB/La,” Lupus, vol. 3, no. 5, pp. 419–422, 1994. View at Scopus
  44. B. T. Kurien, J. Newland, C. Paczkowski, K. L. Moore, and R. H. Scofield, “Association of neutropenia in systemic lupus erythematosus (SLE) with anti-Ro and binding of an immunologically cross-reactive neutrophil membrane antigen,” Clinical and Experimental Immunology, vol. 120, no. 1, pp. 209–217, 2000. View at Scopus
  45. M. R. Lerner, J. A. Boyle, J. A. Hardin, and J. A. Steitz, “Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus,” Science, vol. 211, no. 4480, pp. 400–402, 1981. View at Scopus
  46. S. L. Wolin and J. A. Steitz, “The Ro small cytoplasmic ribonucleoproteins: Identification of the antigenic protein and its binding site on the Ro RNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 7 I, pp. 1996–2000, 1984. View at Scopus
  47. E. Ben-Chetrit, B. J. Gandy, E. M. Tan, and K. F. Sullivan, “Isolation and characterization of a cDNA clone encoding the 60-kD component of the human SS-A/Ro ribonucleoprotein autoantigen,” The Journal of Clinical Investigation, vol. 83, no. 4, pp. 1284–1292, 1989. View at Scopus
  48. S. L. Deutscher, J. B. Harley, and J. D. Keene, “Molecular analysis of the 60-kDa human Ro ribonucleoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9479–9483, 1988. View at Scopus
  49. E. Ben-Chetrit, E. K. L. Chan, K. F. Sullivan, and E. M. Tan, “A 52-kD protein is a novel component of the SS-A/Ro antigenic particle,” Journal of Experimental Medicine, vol. 167, no. 5, pp. 1560–1571, 1988. View at Scopus
  50. E. K. L. Chan, J. C. Hamel, J. P. Buyon, and E. M. Tan, “Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen,” The Journal of Clinical Investigation, vol. 87, no. 1, pp. 68–76, 1991. View at Scopus
  51. K. Itoh, Y. Itoh, and M. B. Frank, “Protein heterogeneity in the human Ro/SSA ribonucleoproteins. The 52- and 60-kD Ro/SSA autoantigens are encoded by separate genes,” The Journal of Clinical Investigation, vol. 87, no. 1, pp. 177–186, 1991. View at Scopus
  52. R. L. Slobbe, W. Pluk, W. J. Van Venrooij, and G. J. M. Pruijn, “Ro ribonucleoprotein assembly in vitro identification of RNA-protein and protein-protein interactions,” Journal of Molecular Biology, vol. 227, no. 2, pp. 361–366, 1992. View at Publisher · View at Google Scholar · View at Scopus
  53. B. T. Kurien, T. L. Chambers, P. Y. Thomas, M. B. Frank, and R. H. Scofield, “Autoantibody to the leucine zipper region of 52 kDa Ro/SSA binds native 60 kDa Ro/SSA: identification of a tertiary epitope with components from 60 kDA Ro/SSA and 52 kDa Ro/SSA,” Scandinavian Journal of Immunology, vol. 53, no. 3, pp. 268–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Boire, M. Gendron, N. Monast, B. Bastin, and H. A. Menard, “Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein,” Clinical and Experimental Immunology, vol. 100, no. 3, pp. 489–498, 1995. View at Scopus
  55. A. Kelekar, M. R. Saitta, and J. D. Keene, “Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins,” The Journal of Clinical Investigation, vol. 93, no. 4, pp. 1637–1644, 1994. View at Scopus
  56. D. A. Rhodes, G. Ihrke, A. T. Reinicke et al., “The 52 000 MW Ro/SS-A autoantigen in Sjögren's syndrome/systemic lupus erythematosus (Ro52) is an interferon-γ inducible tripartite motif protein associated with membrane proximal structures,” Immunology, vol. 106, no. 2, pp. 246–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. H.J. Kong, D. E. Anderson, C. H. Lee, et al., “Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages,” The Journal of Immunology, vol. 179, no. 1, pp. 26–30, 2007. View at Scopus
  58. S. D. Der, A. Zhou, B. R. G. Williams, and R. H. Silverman, “Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15623–15628, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Strandberg, A. Ambrosi, A. Espinosa et al., “Interferon-α induces up-regulation and nuclear translocation of the Ro52 autoantigen as detected by a panel of novel Ro52-specific monoclonal antibodies,” Journal of Clinical Immunology, vol. 28, no. 3, pp. 220–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. G. K. Geiss, M. Salvatore, T. M. Tumpey et al., “Cellular transcriptional profiling in influenza a virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10736–10741, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Zimmerer, G. B. Lesinski, M. D. Radmacher, A. Ruppert, and W. E. Carson, “STAT1-dependent and STAT1-independent gene expression in murine immune cells following stimulation with interferon-alpha,” Cancer Immunology, Immunotherapy, vol. 56, no. 11, pp. 1845–1852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Yoshimi, T. H. Chang, H. Wang, T. Atsumi, H. C. Morse III, and K. Ozato, “Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-κB-dependent cytokine expression in fibroblasts,” The Journal of Immunology, vol. 182, no. 12, pp. 7527–7538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Espinosa, V. Dardalhon, S. Brauner et al., “Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway,” Journal of Experimental Medicine, vol. 206, no. 8, pp. 1661–1671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Yoshimi, Y. Ishigatsubo, and K. Ozato, “Autoantigen TRIM21/Ro52 as a possible target for treatment of systemic lupus erythematosus,” International Journal of Rheumatology, vol. 2012, Article ID 718237, 11 pages, 2012. View at Publisher · View at Google Scholar
  65. R. Rajsbaum, J. P. Stoye, and A. O'Garra, “Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells,” European Journal of Immunology, vol. 38, no. 3, pp. 619–630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Ozato, D. M. Shin, T. H. Chang, and H. C. Morse III, “TRIM family proteins and their emerging roles in innate immunity,” Nature Reviews Immunology, vol. 8, no. 11, pp. 849–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Wada and T. Kamitani, “Autoantigen Ro52 is an E3 ubiquitin ligase,” Biochemical and Biophysical Research Communications, vol. 339, no. 1, pp. 415–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Espinosa, W. Zhou, M. Ek et al., “The Sjögren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death,” The Journal of Immunology, vol. 176, no. 10, pp. 6277–6285, 2006. View at Scopus
  69. A. Sabile, A. M. Meyer, C. Wirbelauer et al., “Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein,” Molecular and Cellular Biology, vol. 26, no. 16, pp. 5994–6004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Y. Kim and K. Ozato, “The sequestosome 1/p62 attenuates cytokine gene expression in activated macrophages by inhibiting IFN regulatory factor 8 and TNF receptor-associated factor 6/NF-κB activity,” The Journal of Immunology, vol. 182, no. 4, pp. 2131–2140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Wada, M. Niida, M. Tanaka, and T. Kamitani, “Ro52-mediated monoubiquitination of IKKβ down-regulates NF-κB signalling,” Journal of Biochemistry, vol. 146, no. 6, pp. 821–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Niida, M. Tanaka, and T. Kamitani, “Downregulation of active IKKβ by Ro52-mediated autophagy,” Molecular Immunology, vol. 47, no. 14, pp. 2378–2387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. B. Frank, K. Itoh, A. Fujisaku, P. Pontarotti, M. G. Mattei, and B. R. Neas, “The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms,” American Journal of Human Genetics, vol. 52, no. 1, pp. 183–191, 1993. View at Scopus
  74. H. Tsugu, R. Horowitz, N. Gibson, and M. B. Frank, “The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1),” Genomics, vol. 24, no. 3, pp. 541–548, 1994. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Nakken, R. Jonsson, and A. I. Bolstad, “Polymorphisms of the Ro52 gene associated with anti-Ro 52-kd autoantibodies in patients with primary Sjogren's syndrome,” Arthritis & Rheumatism, vol. 44, no. 3, pp. 638–646, 2001.
  76. T. Imanishi, A. Morinobu, N. Hayashi et al., “A novel polymorphism of the SSA1 gene is associated with anti-SS-A/Ro52 autoantibody in Japanese patients with primary Sjögren's syndrome,” Clinical and Experimental Rheumatology, vol. 23, no. 4, pp. 521–524, 2005. View at Scopus
  77. J. P. Hendrick, S. L. Wolin, J. Rinke, M. R. Lerner, and J. A. Steitz, “Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells,” Molecular and Cellular Biology, vol. 1, no. 12, pp. 1138–1149, 1981. View at Scopus
  78. C. D. Green, K. S. Long, H. Shi, and S. L. Wolin, “Binding of the 60-kDA Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix,” RNA, vol. 4, no. 7, pp. 750–765, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Belisova, K. Semrad, O. Mayer et al., “RNA chaperone activity of protein components of human Ro RNPs,” RNA, vol. 11, no. 7, pp. 1084–1094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. S. L. Wolin and K. M. Reinisch, “The Ro 60 kDa autoantigen comes into focus: Interpreting epitope mapping experiments on the basis of structure,” Autoimmunity Reviews, vol. 5, no. 6, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. O'Brien and S. L. Wolin, “A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors,” Genes and Development, vol. 8, no. 23, pp. 2891–2903, 1994. View at Scopus
  82. X. Chen, J. D. Smith, H. Shi, D. D. Yang, R. A. Flavell, and S. L. Wolin, “The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation,” Current Biology, vol. 13, no. 24, pp. 2206–2211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Xue, H. Shi, J. D. Smith et al., “A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7503–7508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Itoh and M. Reichlin, “Autoantibodies to the Ro/SSA antigen are conformation dependent. I: anti-60 kD antibodies are mainly directed to the native protein; anti-52 kD antibodies are mainly directed to the denatured protein,” Autoimmunity, vol. 14, no. 1, pp. 57–65, 1992. View at Scopus
  85. G. Boire and J. Craft, “Biochemical and immunological heterogeneity of the Ro ribonucleoprotein particles. Analysis with sera specific for the Ro(hY5) particle,” The Journal of Clinical Investigation, vol. 84, no. 1, pp. 270–279, 1989. View at Scopus
  86. G. Boire, F. J. Lopez-Longo, S. Lapointe, and H. A. Menard, “Sera from patients with autoimmune disease recognize conformational determinants on the 60-kd Ro/SS-A protein,” Arthritis and Rheumatism, vol. 34, no. 6, pp. 722–730, 1991. View at Scopus
  87. Y. Itoh, K. Itoh, M. B. Frank, and M. Reichlin, “Autoantibodies to the Ro/SSA autoantigen are conformation dependent II: antibodies to the denatured form of 52 kD Ro/SSA are a cross reacting subset of antibodies to the native 60 kD Ro/SSA molecule,” Autoimmunity, vol. 14, no. 2, pp. 89–95, 1993. View at Scopus
  88. T. Dörner, E. Feist, A. Wagenmann et al., “Anti-52 kDa Ro(SSA) autoantibodies in different autoimmune diseases preferentially recognize epitopes on the central region of the antigen,” The Journal of Rheumatology, vol. 23, no. 3, pp. 462–468, 1996. View at Scopus
  89. T. Fukuda-Kamitani and T. Kamitani, “Ubiquitination of Ro52 autoantigen,” Biochemical and Biophysical Research Communications, vol. 295, no. 4, pp. 774–778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. M. T. McClain, L. D. Heinlen, G. J. Dennis, J. Roebuck, J. B. Harley, and J. A. James, “Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry,” Nature Medicine, vol. 11, no. 1, pp. 85–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Doria, M. Canova, M. Tonon et al., “Infections as triggers and complications of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 8, no. 1, pp. 24–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. B. D. Poole, A. K. Templeton, J. M. Guthridge, E. J. Brown, J. B. Harley, and J. A. James, “Aberrant epstein-barr viral infection in systemic lupus erythematosus,” Autoimmunity Reviews, vol. 8, no. 4, pp. 337–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Topfer, T. Gordon, and J. Mccluskey, “Intra- and intermolecular spreading of autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A),” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 875–879, 1995. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Furukawa, M. Kashihara-Sawami, M. B. Lyons, and D. A. Norris, “Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus,” Journal of Investigative Dermatology, vol. 94, no. 1, pp. 77–85, 1990. View at Scopus
  95. T. D. Golan, K. B. Elkon, A. E. Gharavi, and J. G. Krueger, “Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet a irradiation,” The Journal of Clinical Investigation, vol. 90, no. 3, pp. 1067–1076, 1992. View at Scopus
  96. W. P. LeFeber, D. A. Norris, S. R. Ryan, et al., “Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes,” The Journal of Clinical Investigation, vol. 74, no. 4, pp. 1545–1551, 1984. View at Scopus
  97. J. Saegusa, S. Kawano, M. Koshiba et al., “Oxidative stress mediates cell surface expression of SS-A/Ro antigen on keratinocytes,” Free Radical Biology and Medicine, vol. 32, no. 10, pp. 1006–1016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Dorner, M. Hucko, W. J. Mayet, U. Trefzer, G. R. Burmester, and F. Hiepe, “Enhanced membrane expression of the 52 kDa Ro(SS-A) and La(SS-B) antigens by human keratinocytes induced by TNFα,” Annals of the Rheumatic Diseases, vol. 54, no. 11, pp. 904–909, 1995. View at Scopus
  99. C. Baboonian, P. J. W. Venables, J. Booth, D. G. Williams, L. M. Roffe, and R. N. Maini, “Virus infection induces redistribution and membrane localization of the nuclear antigen La (SS-B): a possible mechanism for autoimmunity,” Clinical and Experimental Immunology, vol. 78, no. 3, pp. 454–459, 1989. View at Scopus
  100. F. Furukawa, M. B. Lyons, L. A. Lee, S. N. Coulter, and D. A. Norris, “Estradiol enhances binding to cultured human keratinocytes of antibodies specific for SS-A/Ro and SS-B/La. Another possible mechanism for estradiol influence of lupus erythematosus,” The Journal of Immunology, vol. 141, no. 5, pp. 1480–1488, 1988. View at Scopus
  101. L. A. Casciola-Rosen, G. Anhalt, and A. Rosen, “Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes,” Journal of Experimental Medicine, vol. 179, no. 4, pp. 1317–1330, 1994. View at Scopus
  102. J. G. Routsias and A. G. Tzioufas, “Autoimmune response and target autoantigens in Sjogren's syndrome,” European Journal of Clinical Investigation, vol. 40, no. 11, pp. 1026–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. R. W. Wilson, T. T. Provost, and W. B. Bias, “Sjogren's syndrome. Influence of multiple HLA-D region alloantigens on clinical and serologic expression,” Arthritis and Rheumatism, vol. 27, no. 11, pp. 1245–1253, 1984. View at Scopus
  104. R. G. Hamilton, J. B. Harley, W. B. Bias et al., “Two Ro (SS-A) autoantibody responses in systemic lupus erythematosus: correlation of HLA-DR/DQ specificities with quantitative expression of Ro (SS-A) autoantibody,” Arthritis and Rheumatism, vol. 31, no. 4, pp. 496–505, 1988. View at Scopus
  105. J. E. Gottenberg, M. Busson, P. Loiseau et al., “In primary Sjögren's syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2240–2245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. J. B. Harley, M. Reichlin, and F. C. Arnett Jr., “Gene interaction at HLA-DQ enhances autoantibody production in primary Sjogren's syndrome,” Science, vol. 232, no. 4754, pp. 1145–1147, 1986. View at Scopus
  107. J. D. Reveille, M. J. Macleod, K. Whittington, and F. C. Arnett Jr., “Specific amino acid residues in the second hypervariable region of HLA-DQA1 and DQB1 chain genes promote the Ro (SS-A)/La (SS-B) autoantibody responses,” The Journal of Immunology, vol. 146, no. 11, pp. 3871–3876, 1991. View at Scopus
  108. I. Peene, L. Meheus, S. De Keyser, R. Humbel, E. M. Veys, and F. De Keyser, “Anti-Ro52 reactivity is an independent and additional serum marker in connective tissue disease,” Annals of the Rheumatic Diseases, vol. 61, no. 10, pp. 929–933, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. D. M. Langguth, S. Morris, L. Clifford et al., “Specific testing for “isolated” anti-52 kDa SSA/Ro antibodies during standard anti-extractable nuclear antigen testing is of limited clinical value,” Journal of Clinical Pathology, vol. 60, no. 6, pp. 670–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Rozman, B. Bozic, M. Kos-Golja, M. Plesivcnik-Novljan, and T. Kveder, “Immunoserological aspects of idiopathic inflammatory muscle disease,” Wiener Klinische Wochenschrift, vol. 112, no. 15-16, pp. 722–727, 2000. View at Scopus
  111. R. Brouwer, G. J. D. Hengstman, W. Vree Egberts et al., “Autoantibody profiles in the sera of European patients with myositis,” Annals of the Rheumatic Diseases, vol. 60, no. 2, pp. 116–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Koenig, M. J. Fritzler, I. N. Targoff, Y. Troyanov, and J. L. Senécal, “Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes,” Arthritis Research and Therapy, vol. 9, no. 4, article R78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. V. Eyraud, O. Chazouilleres, E. Ballot, C. Corpechot, R. Poupon, and C. Johanet, “Significance of antibodies to soluble liver antigen/liver pancreas: a large French study,” Liver International, vol. 29, no. 6, pp. 857–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. F. Franceschini and I. Cavazzana, “Anti-Ro/SSA and La/SSB antibodies,” Autoimmunity, vol. 38, no. 1, pp. 55–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. P. J. Maddison, T. T. Provost, and M. Reichlin, “Serological findings in patients with 'ANA-negative' systemic lupus erythematosus,” Medicine, vol. 60, no. 2, pp. 87–94, 1981. View at Scopus
  116. T. T. Provost, F. C. Arnett Jr., and M. Reichlin, “Homozygous C2 deficiency, lupus erythematosus, and anti-Ro (SSA) antibodies,” Arthritis and Rheumatism, vol. 26, no. 10, pp. 1279–1282, 1983. View at Scopus
  117. G. Tappeiner, H. Hintner, and S. Scholz, “Systemic lupus erythematosus in hereditary deficiency of the fourth component of complement,” Journal of the American Academy of Dermatology, vol. 7, no. 1, pp. 66–79, 1982. View at Scopus
  118. T. T. Provost, N. Talal, J. B. Harley, M. Reichlin, and E. Alexander, “The relationship between anti-Ro (SS-A) antibody-positive Sjogren's syndrome and anti-Ro (SS-A) antibody-positive lupus erythematosus,” Archives of Dermatology, vol. 124, no. 1, pp. 63–71, 1988. View at Scopus
  119. J. P. Buyon, R. J. Winchester, S. G. Slade et al., “Identification of mothers at risk for congenital heart block and other neonatal lupus syndromes in their children: comparison of enzyme-linked immunosorbent assay and immunoblot for measurement of anti-SS-A/Ro and anti- SS-B/La antibodies,” Arthritis and Rheumatism, vol. 36, no. 9, pp. 1263–1273, 1993. View at Publisher · View at Google Scholar · View at Scopus
  120. J. P. Buyon, R. M. Clancy, and D. M. Friedman, “Cardiac manifestations of neonatal lupus erythematosus: guidelines to management, integrating clues from the bench and bedside,” Nature Clinical Practice Rheumatology, vol. 5, no. 3, pp. 139–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. D. Lockshin, E. Bonfa, K. Elkon, and M. L. Druzin, “Neonatal lupus risk to newborns of mothers with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 31, no. 6, pp. 697–701, 1988. View at Scopus
  122. S. Garcia, J. H. M. Nascimento, E. Bonfa et al., “Cellular mechanism of the conduction abnormalities induced by serum from anti-Ro/SSA-positive patients in rabbit hearts,” The Journal of Clinical Investigation, vol. 93, no. 2, pp. 718–724, 1994. View at Scopus
  123. O. Meyer, G. Hauptmann, and G. Tappeiner, “Genetic deficiency of C4, C2 or C1q and lupus syndromes. Association with anti-Ro (SS-A) antibodies,” Clinical and Experimental Immunology, vol. 62, no. 3, pp. 678–684, 1985. View at Scopus
  124. M. R. Arbuckle, M. T. McClain, M. V. Rubertone et al., “Development of autoantibodies before the clinical onset of systemic lupus erythematosus,” The New England Journal of Medicine, vol. 349, no. 16, pp. 1526–1533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Eriksson, H. Kokkonen, M. Johansson, G. Hallmans, G. Wadell, and S. Rantapää-Dahlqvist, “Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden,” Arthritis Research and Therapy, vol. 13, no. 1, article R30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. L. J. Catoggio, R. P. Skinner, G. Smith, and P. J. Maddison, “Systemic lupus erythematosus in the elderly: clinical and serological characteristics,” The Journal of Rheumatology, vol. 11, no. 2, pp. 175–181, 1984. View at Scopus
  127. S. Praprotnik, B. Bozic, T. Kveder, and B. Rozman, “Fluctuation of anti-Ro/SS-A antibody levels in patients with systemic lupus erythematosus and Sjogren's syndrome: a prospective study,” Clinical and Experimental Rheumatology, vol. 17, no. 1, pp. 63–68, 1999. View at Scopus
  128. E. Scopelitis, J. J. Biundo, and M. A. Alspaugh, “Anti-SS-A antibody and other antinuclear antibodies in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 23, no. 3, pp. 287–293, 1980. View at Scopus
  129. R. H. W. M. Derksen and J. F. Meilof, “Anti-Ro/SS-A and anti-La/SS-B autoantibody levels in relation to systemic lupus erythematosus disease activity and congenital heart block: a longitudinal study comprising two consecutive pregnancies in a patient with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 35, no. 8, pp. 953–959, 1992. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Wahren, P. Tengnér, I. Gunnarsson et al., “Ro/SS-A and La/SS-B antibody level variation in patients with Sjogren's syndrome and systemic lupus erythematosus,” Journal of Autoimmunity, vol. 11, no. 1, pp. 29–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  131. A. B. Hassan, I. E. Lundberg, D. Isenberg, and M. Wahren-Herlenius, “Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus,” Scandinavian Journal of Rheumatology, vol. 31, no. 3, pp. 133–139, 2002. View at Scopus
  132. P. Maddison, H. Mogavero, T. T. Provost, and M. Reichlin, “The clinical significance of autoantibodies to a soluble cytoplasmic antigen in systemic lupus erythematosus and other connective tissue diseases,” The Journal of Rheumatology, vol. 6, no. 2, pp. 189–195, 1979. View at Scopus
  133. E. Simmons-O'Brien, S. Chen, R. Watson et al., “One hundred anti-Ro (SS-A) antibody positive patients: a 10-year follow-up,” Medicine, vol. 74, no. 3, pp. 109–130, 1995. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Brucato, R. Cimaz, R. Caporali, V. Ramoni, and J. Buyon, “Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies,” Clinical Reviews in Allergy and Immunology, vol. 40, no. 1, pp. 27–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Chameides, R. C. Truex, V. Vetter, W. J. Rashkind, F. M. Galioto Jr., and J. A. Noonan, “Association of maternal systemic lupus erythematosus with congenital complete heart block,” The New England Journal of Medicine, vol. 297, no. 22, pp. 1204–1207, 1977. View at Scopus
  136. W. L. Weston, C. Harmon, and C. Peebles, “A serological marker for neonatal lupus erythematosus,” British Journal of Dermatology, vol. 107, no. 4, pp. 377–382, 1982. View at Scopus
  137. L. A. Lee, W. B. Bias, F. C. Arnett Jr., et al., “Immunogenetics of the neonatal lupus syndrome,” Annals of Internal Medicine, vol. 99, no. 5, pp. 592–596, 1983. View at Scopus
  138. R. Claus, H. Hickstein, T. Külz et al., “Identification and management of fetuses at risk for, or affected by, congenital heart block associated with autoantibodies to SSA (Ro), SSB (La), or an HsEg5-like autoantigen,” Rheumatology International, vol. 26, no. 10, pp. 886–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Fujimoto, M. Shimozuma, N. Yazawa et al., “Prevalence and clinical relevance of 52-kDa and 60-kDa Ro/SS-A autoantibodies in Japanese patients with systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 56, no. 11, pp. 667–670, 1997. View at Scopus
  140. M. B. Frank, V. McCubbin, E. Trieu, Y. Wu, D. A. Isenberg, and I. N. Targoff, “The association of anti-Ro52 autoantibodies with myositis and scleroderma autoantibodies,” Journal of Autoimmunity, vol. 12, no. 2, pp. 137–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. I. N. Targoff, F. W. Miller, T. A. Medsger Jr., and C. V. Oddis, “Classification criteria for the idiopathic inflammatory myopathies,” Current Opinion in Rheumatology, vol. 9, no. 6, pp. 527–535, 1997. View at Scopus
  142. A. H. Kao, D. Lacomis, M. Lucas, N. Fertig, and C. V. Oddis, “Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy,” Arthritis and Rheumatism, vol. 50, no. 1, pp. 209–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. E. Schneeberger, G. Citera, M. Heredia, and J. M. Cocco, “Clinical significance of anti-Ro antibodies in rheumatoid arthritis,” Clinical Rheumatology, vol. 27, no. 4, pp. 517–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. H. M. Moutsopoulos, H. Giotaki, P. J. Maddison, A. C. Mavridis, A. A. Drosos, and F. N. Skopouli, “Antibodies to cellular antigens in Greek patients with autoimmune rheumatic diseases: anti-Ro (SSA) antibody a possible marker of penicillamine-D intolerance,” Annals of the Rheumatic Diseases, vol. 43, no. 2, pp. 285–287, 1984. View at Scopus
  145. H. M. Moutsopoulos, F. N. Skopouli, A. K. Sarras, et al., “Anti-Ro(SSA) positive rheumatoid arthritis (RA): a clinicoserological group of patients with high incidence of D-penicillamine side effects,” Annals of the Rheumatic Diseases, vol. 44, no. 4, pp. 215–219, 1985. View at Scopus
  146. M. Tishler, B. Golbrut, Y. Shoenfeld, and M. Yaron, “Anti-Ro(SSA) antibodies in patients with rheumatoid arthritis a possible marker for gold induced side effects,” The Journal of Rheumatology, vol. 21, no. 6, pp. 1040–1042, 1994. View at Scopus
  147. R. Matsudaira, N. Tamura, F. Sekiya, M. Ogasawara, K. Yamanaka, and Y. Takasaki, “Anti-Ro/SSA antibodies are an independent factor associated with an insufficient response to tumor necrosis factor inhibitors in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 38, no. 11, pp. 2346–2354, 2011.
  148. D. A. Norris, “Pathomechanisms of photosensitive lupus erythematosus,” Journal of Investigative Dermatology, vol. 100, no. 1, pp. 58S–68S, 1993. View at Scopus
  149. D. Ioannides, B. D. Golden, J. P. Buyon, and J. C. Bystryn, “Expression of SS-A/Ro and SS-B/La antigens in skin biopsy specimens of patients with photosensitive forms of lupus erythematosus,” Archives of Dermatology, vol. 136, no. 3, pp. 340–346, 2000. View at Scopus
  150. R. D. Sontheimer, “Photoimmunology of lupus erythematosus and dermatomyositis: a speculative review,” Photochemistry and Photobiology, vol. 63, no. 5, pp. 583–594, 1996. View at Scopus
  151. J. S. Deng, L. W. Bair Jr., S. Shen-Schwarz, R. Ramsey-Goldman, and T. Medsger Jr., “Localization of Ro (SS-A) antigen in the cardiac conduction system,” Arthritis and Rheumatism, vol. 30, no. 11, pp. 1232–1238, 1987. View at Scopus
  152. P. V. Taylor, J. S. Scott, L. M. Gerlis, E. Esscher, and O. Scott, “Maternal antibodies against fetal cardiac antigens in congenital complete heart block,” The New England Journal of Medicine, vol. 315, no. 11, pp. 667–672, 1986. View at Scopus
  153. C. E. Tseng and J. P. Buyon, “Neonatal lupus syndromes,” Rheumatic Disease Clinics of North America, vol. 23, no. 1, pp. 31–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  154. R. M. Clancy, P. J. Neufing, P. Zheng et al., “Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block,” The Journal of Clinical Investigation, vol. 116, no. 9, pp. 2413–2422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Briassouli, E. V. Komissarova, R. M. Clancy, and J. P. Buyon, “Role of the urokinase plasminogen activator receptor in mediating impaired efferocytosis of anti-SSA/Ro-bound apoptotic cardiocytes implications in the pathogenesis of congenital heart block,” Circulation Research, vol. 107, no. 3, pp. 374–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. P. Briassouli, D. Rifkin, R. M. Clancy, and J. P. Buyon, “Binding of anti-SSA antibodies to apoptotic fetal cardiocytes stimulates urokinase plasminogen activator (uPA)/uPA receptor-dependent activation of TGF-beta and potentiates fibrosis,” The Journal of Immunology, vol. 187, no. 10, pp. 5392–5401, 2011.
  157. P. E. Lazzerini, M. Acampa, F. Guideri et al., “Prolongation of the corrected QT interval in adult patients with Anti-Ro/SSA-positive connective tissue diseases,” Arthritis and Rheumatism, vol. 50, no. 4, pp. 1248–1252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. J. Bourre-Tessier, A. E. Clarke, T. Huynh, et al., “Prolonged corrected QT interval in anti-Ro/SSA-positive adults with systemic lupus erythematosus,” Arthritis Care and Research, vol. 63, no. 7, pp. 1031–1037, 2011. View at Publisher · View at Google Scholar
  159. P. E. Lazzerini, P. L. Capecchi, M. Acampa et al., “Arrhythmogenic effects of anti-Ro/SSA antibodies on the adult heart: more than expected?” Autoimmunity Reviews, vol. 9, no. 1, pp. 40–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. P. E. Lazzerini, P. L. Capecchi, F. Guideri et al., “Comparison of frequency of complex ventricular arrhythmias in patients with positive versus negative anti-Ro/SSA and connective tissue disease,” American Journal of Cardiology, vol. 100, no. 6, pp. 1029–1034, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. D. L. Mallery, W. A. McEwan, S. R. Bidgood, G. J. Towers, C. M. Johnson, and L. C. James, “Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21),” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 19985–19990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Espinosa, J. Hennig, A. Ambrosi, et al., “Anti-Ro52 autoantibodies from patients with Sjogren's syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface,” The Journal of Biological Chemistry, vol. 286, no. 42, pp. 36478–36491, 2011.